Glutathione Reductase

Home - Reagents - Glutathione Reductase
reagents-logo

Key Benefits

Applications available

For a wide variety of clinical chemistry analysers

Exceptional correlation

The Glutathione Reductase assay showed a correlation of r=0.988 against another commercially available method

Excellent linearity

387 U/l, removing the need for sample dilution

Randox Glutathione Reductase (UV)

  • UV method
  • Lyophilised reagents
  • Working reagent stable for 2 days when stored at 2-8°C
  • Measuring range 9.69 – 387 U/l
Cat NoSizeAnalyserEasy Read
Easy Fit
 
GR23688 x 6.5ml
R2 5 x 3ml
General Use--

Instrument Specific Applications (ISA’s) are available for a wide range of biochemistry analysers.  Contact us to enquire about your specific analyser.

What is Glutathione Reductase assay used for?

Glutathione Reductase is required for the regeneration of reduced glutathione which is important for normal cellular metabolism. This enzyme is often discussed in association with Glutathione Peroxidase, which requires reduced glutathione for activation. Glutathione Reductase is responsible for maintaining levels of reduced glutathione which has many important functions in the cell. Glutathione plays a role in protein folding and the maintenance of reduced pools of vitamin C and E. Reduced levels of this enzyme have been described in several diseases.

  • Seghrouchni, I., et al. (2002) Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus; insulin treatment efficiency. Clin. Chim. Acta. 321(1-2): 89-96
  • Zachwieja, J. et al. (2003) Decreased antioxidant activity in hypercholesterolemic children with nephrotic syndrome. Med. Sci. Monit., 9:CR287-291
  • Malinowski, E., et al. (2004) The effect of some drugs injection to pregnant heifers on blood antioxidant status. Pol. J. Vet. Sci.,7: 91-95
  • Banfi, G., et al. (2006) Plasma oxidative stress biomarkers, nitric oxide and heat shock protein 70 in trained elite soccer players.Eur. J. Appl. Physiol., 96: 483-486
  • Celik, I., et al. (2006) Antioxidant and immune potential marker enzymes assessment in the various tissues of rats exposed to indolacetic acid and kinetin: A drink water study. Pesticide Biochemistry and Physiology. 86: 180-185
  • Tátrai, E., et al. (2006) Redox status and expression of chemokines in the rat lungs on exposure to asbestos and asbestos substituents. Neuro. Endocrinol. Lett. 27 Suppl 2: 40-43
  • Drelich, G., et al. (2007) (Article in Polish) Imbalance of oxidoreductive status in suicidal antidepressant drugs poisoning. Przegl. Lek. 64: 258-259
  • Čolak, E. et al. (2008) Biomarkers of enzymatic and non-enzymatic antioxidative defense in type 2 diabetes mellitus-comparative analysis. Biochemia Medica. 18 (2): 42-51
  • Perše, M., et al. (2009) Effect of high-fat mixed-lipid diet and exercise on the antioxidant system in skeletal and cardiac muscles of rats with colon carcinoma. Pharmacol. Rep. 61(5): 909-916
  • Biljak, V.K.. et al. (2010) Glutathione cycle in stable chronic obstructive pulmonary disease. Cell Biochem. Funct. 28(6): 448-453
  • Singh, N. et al. (2010) Adverse health effects due to arsenic exposure: Modification by dietary supplementation of jaggery in mice. Toxicol. Appl. Pharmacol. 242(3): 247-255
  • Djordjevic, J., et al. (2011) Fluoxetine affects antioxidant system and promotes apoptotic signalling in Wistar rat liver. Eur. J.Pharmacol. 659(1): 61-66
  • Huo, H.Z., et al. (2011) Hepatoprotective and antioxidant effects of licorice extract against CCl4-induced oxidative damage in rats. Int. J. Mol. Sci. 12: 6529-6543
  • Voljč., M., et al. (2011) Evaluation of different vitamin E recommendations and bioactivity of α-tocopherol isomers in broiler nutrition by measuring oxidative stress in vivo and the oxidative stability of meat. Poult. Sci. 90(7): 1478-1488
  • Dogliotti, G., et al. (2012) Natural zeolites chabazite/phillipsite/analcime increase blood levels of antioxidant enzymes. J. Clin. Biochem. Nutr. 50(3): 195-198
  • Gravina, L., et al. (2012) Influence of nutrient intake on antioxidant capacity, muscle damage and white blood cell count in female soccer players. J. Int. Soc. Sports Nutr. 9(1): 32
  • Hübner-Wózniak E., et al. (2012) Effect of rugby training on blood antioxidant defenses in able-bodied and spinal cord injured players. Spinal Cord 50(3): 253-256
  • Herbet, M., et al. (2013) Influence of combined therapy with rosuvastatin and amitriptyline on the oxidation-reduction status in rats. Acta Poloniae Pharmaceutica. 70(5): 913-917
Request a meeting
×
Make an Enquiry - RX series
×
Make an Enquiry - Reagents
  • This field is for validation purposes and should be left unchanged.
×
Kit Insert Request - Reagents
×
Kit Insert Request - Reagents
×
Make an Enquiry - Reagents
×
Make an Enquiry - Quality Control
×
Make an Enquiry - RIQAS
×
Make an Enquiry - RIQAS
×
Make an Enquiry - Quality Control
×
Make an Enquiry
×
Make an Enquiry - Biochip
  • This field is for validation purposes and should be left unchanged.
×
Make an Enquiry - Molecular
  • This field is for validation purposes and should be left unchanged.
×
Make an Enquiry - Future Diagnostics
×
Make an Enquiry - RX series (Product)
×
Make an Enquiry - Quality Control
×
Make an Enquiry - RIQAS
×
Make an Enquiry - Reagents
×
Por favor, introduzca sus datos para ver nuestro último seminario
×