Alzheimer’s Disease: The Role of Apolipoprotein E
Alzheimer’s Disease: The Role of Apolipoprotein E

Alzheimer’s Disease: The Role of Apolipoprotein E
Raising awareness of Alzheimer’s Disease
Every year we celebrate Alzheimer’s Day on 21st September to help raise awareness around dementia. Dementia is the medical name attributed to a set of symptoms affecting the brain, including: difficulties with problem solving, thinking, language and memory loss. AD is the most common form of dementia accounting for 60 – 80% of cases and it is believed that half of patients with Alzheimer’s dementia (dementia due to AD) have Alzheimer’s disease 1, 2.
About Alzheimer’s Disease (AD)
AD is one of the most devastating and complex diseases characterised by:
- Neurodegeneration resulting in memory loss 2
- Neurofibrillary tangles composed of tau amyloid fibrils which associates with synapse loss 2
- Accumulation of β-amyloid (Aβ) plaques 2
- Other cognitive functions 2
Figure 1: Alzheimer’s Disease Demographic, 2019 3

It is believed that AD is expected to begin 20 years prior to symptom onset, as the small changes in the functioning of the brain are unnoticeable to the person affected. Overtime, the symptoms progress and begin to interfere with the patient’s ability to perform everyday tasks. The final stages of AD leaves the patient bed-bound, requiring 24/7 care. Ultimately, AD is fatal. Age has been identified as a risk factor for AD with 10% of people over the age of 65 affected. Moreover, AD has been recognised as a leading cause of morbidity and the sixth leading cause of mortality, but the fifth leading cause of death in over 65’s in the US .3
Physiological Significance of Apolipoprotein E
Apolipoprotein E (Apo E) is a lipoprotein composed of 299 amino acids with a molecular weight of 34kDa. Apo E is responsible for the regulation of homeostasis through the mediation of lipid transport from and to bodily cells and tissues. Apo E comprises of three common isoforms: apo E2, apo E3 and apo E4. The apo E isoforms differ due to differences in either the 112 and 158 amino acids, whether either arginine (ARG) or cysteine (CYS) is present 4.
Apo E3 is the parent form of apo E and is responsible for the clearance of triglyceride-rich lipoproteins. Apo E3 is associated with normal lipid plasma concentrations. Apo E2 is the rarest of the apo E isoforms and differs slightly compared to the apo E3 isoform through the substitution of a single amino acid, ARG158Cys, located near the low-density lipoprotein receptor (LDLR) recognition site.
Apo E2 displays impaired binding to the receptor, prohibiting the clearance of triglyceride-rich lipoprotein remnant particles. Apo E2 is strongly associated with type-III hyperlipoproteinemia. Apo E3 also differs from apo E4, again through the substitution of a single amino acid, Cys112Arg. The main difference between apo E3 and apo E4 is that apo E4 is unaffected by the binding of the isoform to LDLR. However, apo E4 is strongly associated with dyslipidemia 5. Fig. 2 provides a visual representation of the variations in the Apo E isoforms.
Figure 2: Variations in the Apo E Isoforms 4

Apo E is expressed in numerous bodily organs with the liver presenting with the highest expression followed by the brain. Astrocytes and, to a lesser extent, microglia are the major cells responsible for the expression of apo E in the brain. In the brain, apo E, apo J and apo A-1 are predominantly expressed on distinct high-density-like lipoprotein particles. Whilst apo A-1 is the major apolipoprotein of high-density lipoproteins (HDL), in the central nervous system (CNS), apo E is the predominant apolipoprotein of HDL-like lipoproteins. HDL-like lipoproteins are the only lipoproteins present in the CNS. It is believed that the cholesterol released from apo E supports synaptogenesis 6.
Clinical Significance of Apolipoprotein E in Alzheimer’s Disease
Whilst apo E3 is the most abundant of the three isoforms, apo E4 has been known for decades to be the most significant genetic risk factor for late-onset AD. Inheriting the one copy of the apo E4 gene increases the risk of AD 2-3-fold, whilst inheriting two copies increases the risk of AD up to 12-fold 7. Whilst the underlying mechanism of apo E’s contribution to AD risk is still unclear and debatable, apo E has been identified as promoting amyloid β (Aβ) deposition and clearance as well as neurofibrillary tangles in the brain. Interestingly, Aβ-independent pathways exist for apo E in AD, which led to the unearthing of the new roles of apo E including the most recent, iron metabolism and mitochondria dysfunction 8, 9. Captivatingly, sex-related hormones may play a role in AD in apo E4 carriers as AD has been recognised to be more pronounced in women 10. Apo E4 has also been identified as impairing lipid transport, microglial responsiveness, glucose metabolism, synaptic plasticity and integrity, and cerebrovascular function and integrity. Some of these pathogeneses are independent of Aβ pathways. Furthermore, therapeutic strategies are aiming to modulate the quantity, lipidation, structural properties, Aβ interaction and receptor expression of Apo E 11.
Key Features of the Randox Apolipoprotein E Assay
Randox are one of the only manufacturers to offer the apo E assay in an automated clinical chemistry format. Utilising the immunoturbidimetric method, the Randox apo E assay is available in a liquid ready-to-use format. Not only does the Randox apo E suffer from limited interferences from bilirubin, haemoglobin, intralipid® and triglycerides for truly accurate results, it has an excellent measuring range of 1.04 – 12.3mg/dl for the comfortable detection of clinically important results. Moreover, apolipoprotein calibrator and controls are available for a complete testing package. Applications are available detailing instrument-specific settings for the convenient use of the Randox apo E assay on a wide range of clinical chemistry analysers.
Biochip Technology – Alzheimer’s Array
Utilising the Biochip Technology, Randox have developed an array to identify the risk of Alzheimer’s disease in just 3 hours with one effective test. In addition to a rapid and accurate diagnosis, this also introduces both cost and time-saving benefits. The apo E4 array is a research use only product developed for the Evidence Investigator, a semi-automated benchtop immunoassay analyser which can process up to 2376 test per hour as well as up to 44 analytes screened per biochip. The apo E4 array measures both total apo E protein levels and apo E4 protein levels directly from plasma samples as well as using a ratio, it can classify patients as negative or positive for apo E4. In turn, we can then assess their risk for the development of Alzheimer’s disease.
Related Products
Randox Reagents Homepage
Evidence Series Immunoanalysers
RX Series Analysers
References
[1] Alzheimer’s Society. Alzheimer’s disease. [Online] [Cited: September 2, 2019.] https://www.alzheimers.org.uk/about-dementia/types-dementia/alzheimers-disease.
[2] Gaugler, Joseph, et al. 2019 Alzheimer’s Disease Facts and Figures. s.l. : Alzheimer’s Association, 2019.
[3] 2014 Update of the Alzheimer’s Disease Neuroimaging Initiative: A review of papers published since its inception. Weiner, Michael W, et al. 6, San Francisco : Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 2015, Vol. 11.
[4] Apolipoprotein E and Alzheimer disease: risk, mechanisms, and therapy. Liu, Chia-Chen, et al. 2, Fujian : Nature Reviews Neurology, 2013, Vol. 9.
[5] Apolipoprotein E isoforms and lipoprotein metabolism. Phillips, Michael C. 9, Philadelphia : IUBMB Journals, 2014, Vol. 66.
[6] The Role of Apolipoprotein E in Alzheimer’s Disease. Kim, Jungsu, Basak, Jacob M and Holtzman, David M. 3, St Louis : Neuron, 2009, Vol. 63.
[7] Dacks, Penny. What ApoE Means For Your Health. Cognitive Vitality. [Online] November 16, 2016. [Cited: September 11, 2019.] https://www.alzdiscovery.org/cognitive-vitality/blog/what-apoe-means-for-your-health.
[8] The Complex Role of Apolipoprotein E in Alzheimer’s Disease: an Overview and Update. Mahoney-Sanchez, Laura, et al. 3, Parkville : Journal of Molecular Neuroscience, 2016, Vol. 60.
[9] Understanding the Role of ApoE Fragments in Alzheimer’s Disease. Muñoz, SS, Gerner, B and Ooi, L. 6, Wollongong : Neurochemical Research, 2019, Vol. 44.
[10] ApoE4: an emerging therapeutic target for Alzheimer’s disease. Affieh, Mirna, Korczyn, Amos D and Michaelson, Daniel M. 64, s.l. : BMC Medicine, 2019, Vol. 17.
[11] Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Yamazaki, Yu, et al. 9AB, s.l. : Nature Reviews Neurology, 2019, Vol. 15.
Archives
- May 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- July 2014
- June 2014