Diagnosing UTI Complications in Mothers and Newborns
Diagnosing UTI Complications in Mothers and Newborns
Diagnosing UTI Complications in Mothers and Newborns
Urinary tract infections (UTIs) are one of the most common bacterial infections that occur in humans. Over 50% of women become infected with a UTI at least once in their lives, with up to 10% of women suffering from yearly infections5. Recurrence rates are high in UTIs, almost 50% of women who contract a UTI experience reinfection or relapse within one year of the initial infection5. Men are four times less likely to contract a UTI due to a longer urethra seen in men when compared with women.
Infections occur in the urinary organs and structures which can be categorized by the site of infection: cystitis (bladder), pyelonephritis (kidney) and bacteriuria (urine)5. So-called, uncomplicated UTIs are sited only in the bladder, however, UTIs are highly likely to cause secondary infections, commonly in the kidneys. Pyelonephritis has been shown to result in renal scarring and in some cases, subsequent renal failure2. There are various species of bacteria responsible for UTIs, which have different mechanisms of infection and virulence. However, most species have surface adhesins which function like hooks, attaching the bacteria to the urothelial mucosal surface, and colonizing the bladder. From here, the bacteria can ascend the ureters, reaching the kidney and causing secondary infections2.
Under normal conditions, the innate immune system actions an inflammatory response to the infection site. However, some species of bacteria that cause UTI can inhibit or delay the immune response resulting in secondary infections in the ureters and kidneys where the risk of severe renal defects is considerable, and the bacteria have direct access to the bloodstream2.
Common symptoms of UTI include:
- Frequent urination
- Painful urination
- Incomplete voiding of the bladder
- Pelvic, back, and/or abdominal pain
- Haematuria
- Lethargy
- Nausea and/or vomiting
- Fever
Antibiotic therapies are effective and aim to facilitate the immune response and inhibit the spread of the infection to the kidneys and upper urinary tract. Although these treatments are usually effective, antimicrobial resistance (AMR) has become a global crisis encompassing all medical disciplines3. This resistance to antibiotics can occur through several mechanisms such as dysregulation of protein expression, structural modifications, and mutations to name a few11.
Bacteria are capable of some level of intrinsic resistance, or insensitivity, to antibiotics through the production of various enzymes designed to degrade the drug or inhibit its mechanism11. Mutations found in the genome of bacterial species are often responsible for the resistance they display. These mutations commonly alter the bacterial binding sites used by antibiotics, therefore inhibiting their action. Some bacteria produce enzymes, which alter the chemical structure of the antibiotic, again, inhibiting them from binding to the antibiotic. Other examples include horizontal gene transfer and biofilm formation10.
One study reported in 2019, that AMR was the twelfth leading cause of death when compared with a susceptible infection counterfactual9. The same study went on to show that AMR had the highest mortality rate in low to middle-income countries providing evidence that AMR is an even bigger problem in the most impoverished parts of the world. New techniques such as CRISPR-Cas9 and antibiotic re-sensitization methods are at the forefront of the fight against AMR, however, the scale of the problem warrants taking all possible action to elevate the risk posed by AMR8.
UTI During Pregnancy
UTIs are a common occurrence in pregnancy with one hospital reporting over 15% of pregnant women being diagnosed with some form of UTI4. Diagnosis can usually be confirmed by a bacterial growth of over 105 counts/ml in urine4, 12, 13. Many hormonal and anatomical changes occur in a woman’s body during pregnancy that create favorable conditions for UTI. Firstly, the glomerular filtration rate is altered, causing an increase in glucose concentration and pH of the urine3. The urethral dilation, smooth muscle relaxation, enlarged mechanical compression of the uterus, and increased plasma volume result in lower urinary concentration and increased bladder size leading to urinary tract reflux and urine stagnation. These conditions are favorable for the proliferation of bacterial infections1.
Diagnosis of UTIs in pregnant women can be complicated. For example, the increased frequency of urination experienced could also be caused by additional pressure placed on the woman’s bladder by the baby, or the abdominal pain indicative of a UTI could be interpreted as Braxton Hicks contractions and vice versa3. There are several established risk factors associated with UTI in pregnancy including advanced maternal age, diabetes, sickle cell anemia, history of UTI, urinary tract abnormalities, and various immunodeficiencies3. Other reports claim that UTI in pregnancy is more common in women with hypothyroidism and women who are carrying their first child4.
Bacterial Species Responsible for UTI
There are a multitude of bacterial species responsible for UTIs, the most common is Escherichia coli (E. coli), followed by group B streptococcus (GBS), enterococcus, and Klebsiella pneumonia. Escherichia coli infections are categorized as either enteric or extraintestinal (ExPEC). Of the latter, there are two main culprits: neonatal meningitis E. coli (NMEC) and uropathogenic E. coli (UPEC)2. These infections can exist in the gut and spread, colonizing other parts of the host such as the blood or central nervous system, causing other potentially severe infections. Of these strains, UPEC is responsible for around 80% of both symptomatic and asymptomatic UTIs. UPEC strains have been associated with acute renal damage and are thought to encourage bacterial growth and persistence by inhibiting or delaying the innate immune response2.
Maternal and Perinatal UTI Complications
UTI complications in mothers and children have long been debated. However, there is sufficient evidence to support several prognostic claims. Preterm delivery is a major complication associated with UTI and has been well studied. Preterm neonates face a high risk of fatality with up to 1 million babies dying every year due to premature labor6. Those that survive are at risk of developing one or more of the following health defects1:
- Lung problems
- Diabetes
- Heart Disease
- Hearing loss
- Visual impairment
- Learning disabilities
- Behavioral problems
- Cerebral palsy
The risk of preterm birth in women who suffered from a single UTI was increased when compared to women who had no infection during their pregnancy but recurrent UTIs did not increase the risk3. Risk of low birth weight has been shown to increase by 50% in women who suffered symptomatic UTIs compared to those who remained uninfected throughout their pregnancy; this risk can be mitigated through antibiotic therapy. The same treatments did not show any significant ameliorative effects on preterm birth4. Women who contract a UTI during pregnancy are also at a higher risk of various conditions such as preeclampsia, postpartum endometritis, sepsis1, hypertensive disorders, anemia and amnionitis4.
Asymptomatic UTIs, also known as asymptomatic bacteriuria (ASB), are not known to cause as drastic primary effects on pregnancy as seen with symptomatic infections. Despite this, ASB can spread and colonize in the kidneys. At this point, pyelonephritis is likely to occur, increasing the risk of severe renal scarring4 and advanced risk of preterm birth3. In these cases, it is common to treat the patient with antibiotics to reduce the risk of a secondary, symptomatic infection. While these treatments are effective at limiting the progression of the infection, overuse of antibiotics is a primary factor contributing to antimicrobial resistance4.
Screening and Treating UTI Complications
Women who are not pregnant and show no risk factors can be tested for UTI through a simple urine dipstick. The presence of leukocyte and absence of nitrite can be considered a positive UTI diagnosis. However, where complications are likely, a urine culture is required. Cultures can be carried out on blood or MacConkey agar and require preservation of the sample in boric acid, or in a refrigerator, for 24 hours prior to testing. This culture can then be isolated and used to identify the strain of bacteria causing the infection7.
Species identification is imperative in maternal UTIs. Different species have different levels of sensitivity to the various antibiotics available. E. coli, for example, shows 93% sensitivity to Nitrofurantoin but is only 86% sensitive to Fosfomycin. Selection of the correct treatment can ameliorate symptoms rapidly and reduce the possible complications for both mother and baby4. Many species of bacteria known to be responsible for UTIs have displayed resistance to antibiotics. Group B streptococcus has been shown to be 42% resistant to clindamycin4. The selection of antibiotics available to clinicians treating maternal UTI are already limited as many antibiotics have been associated with increased risk of miscarriage and birth defects independent of UTI1.
With the patient in mind, Randox provides clinicians with both laboratory and near patient testing solutions. Bringing to the market, to help eliminate distress and improve testing turnaround times, the Randox Urinary Tract Infection Array. It has the ability to detect 30 bacterial, fungal, and associated antibiotic resistance markers from a single urine sample in under four hours. This multiplex diagnostic tool can help detect specific bacterial and fungal strains known to cause UTI allowing laboratories to confidently diagnose patients in a timely manner, aiding with targeted treatments and helping to reduce risk of complications.
The Ongoing UTI Battle
Maternal UTI is a very common problem resulting in many fatalities and morbidities worldwide. It is crucial to identify and characterize these infections to limit the negative effects seen to both mothers and their children. Quick and efficient screening is paramount in the battle against bacteria to allow the prescription of targeted treatment. While antibiotics are often an effective weapon against UTIs, care should be taken when prescribing these treatments to pregnant women due to the potential adverse effects that have been reported. Furthermore, unnecessary treatments using antibiotics should be avoided at all costs due to the increasingly serious issue of antimicrobial resistance.
References
1.Eslami V, Belin S, Sany T, Ghavami V, Peyman N. The relationship of health literacy with preventative behaviours of urinary tract infection in pregnant women. Journal of Health Literacy. 2022;6(4):22-31. doi:https://doi.org/10.22038/jhl.2021.59768.1183
2.Bien J, Sokolova O, Bozko P. Role of Uropathogenic Escherichia coli Virulence Factors in Development of Urinary Tract Infection and Kidney Damage. International Journal of Nephrology. Published online 2012:1-15. doi:https://doi.org/10.1155/2012/681473
3.Werter DE, Kazemier BM, van Leeuwen E, et al. Diagnostic work-up of urinary tract infections in pregnancy: study protocol of a prospective cohort study. BMJ Open. 2022;12(9):e063813. doi:https://doi.org/10.1136/bmjopen-2022-063813
4.Balachandran L, Jacob L, Al Awadhi R, et al. Urinary Tract Infection in Pregnancy and Its Effects on Maternal and Perinatal Outcome: A Retrospective Study. Cureus. 2022;14(1). doi:https://doi.org/10.7759/cureus.21500
5.Bono MJ, Reygaert WC. Urinary Tract Infection. Nih.gov. Published 2018. https://www.ncbi.nlm.nih.gov/books/NBK470195/
6.World Health Organization. Preterm birth. Who.int. Published February 19, 2018. Accessed February 8, 2023. https://www.who.int/news-room/fact-sheets/detail/preterm-birth
7.Sinawe H, Casadesus D. Urine Culture. PubMed. Published 2021. https://www.ncbi.nlm.nih.gov/books/NBK557569/
8.Schrader SM, Botella H, Vaubourgeix J. Reframing antimicrobial resistance as a continuous spectrum of manifestations. Current Opinion in Microbiology. 2023;72:102259. doi:https://doi.org/10.1016/j.mib.2022.102259
9.Murray CJ, Ikuta KS, Sharara F, et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. The Lancet. 2022;399(10325):629-655. doi:https://doi.org/10.1016/S0140-6736(21)02724-0
10.Ali J, Rafiq QA, Ratcliffe E. Antimicrobial resistance mechanisms and potential synthetic treatments. Future Science OA. 2018;4(4):FSO290. doi:https://doi.org/10.4155/fsoa-2017-0109
11.Nelson DW, Moore JE, Rao JR. Antimicrobial resistance (AMR): significance to food quality and safety. Food Quality and Safety. 2019;3(1):15-22. doi:https://doi.org/10.1093/fqsafe/fyz003
12.Myers AL. Curbside Consultation in Pediatric Infectious Disease : 49 Clinical Questions. Slack; 2012:4.
13.Oie S, Kamiya A, Hironaga K, Koshiro A. Microbial contamination of enteral feeding solution and its prevention. American Journal of Infection Control. 1993;21(1):34-38. doi:https://doi.org/10.1016/0196-6553(93)90205-i
7. Sinawe H, Casadesus D. Urine Culture. PubMed. Published 2021. https://www.ncbi.nlm.nih.gov/books/NBK557569/
ABOUT RANDOX
NEWS
VACANCIES
OUR PEOPLE
Cross Border Collaboration delivers International Award for High Design Quality: Randox Discovery, The Benchtop Lab receives Red Dot Design Award
Cross Border Collaboration delivers International Award for High Design Quality: Randox Discovery, The Benchtop Lab receives Red Dot Design Award
The Randox Discovery, an exciting and unique diagnostic analyser which can consolidate molecular and immunoassay testing on one compact benchtop platform, has received the 2021 Red Dot Award for High Design Quality.
Red Dot, which has become established as one of the top profile product design awards has roots dating back as far as 1955 and determines the best products created each year. Recognised as one of the largest global product competitions for innovation excellence, this sought-after seal for quality design attracts submissions from over 50 countries, across 49 different categories including medical devices and technology.
Dr Stuart Jackson, Randox Project Design Engineer, commented;
“Randox are delighted to have achieved the Red Dot design award, the culmination of five years of development and coordination of engineering design teams spanning two continents. The Discovery is a particularly unique innovation capable of automating Randox Biochip molecular diagnostics assays, from sample lysis and end-point PCR to multiplexing detection, with accessibility and ease-of-use at the forefront of the design.”
Dolmen were briefed by the Randox team to develop a creative and dynamic way to showcase the cutting-edge inner workings of the Discovery. Essentially, to turn the magic of the machine into a piece of theatre; not just a tool, but the centre of attention, a focal point for the lab that has excellent usability and accessibility throughout. Dolmen and Randox collaborated closely to deliver a revolutionary instrument that, amongst its many abilities, is a COVID-19 diagnostic analyser that is the first of its kind.
Chris Murphy, CEO and Design Director, Dolmen Design and Innovation, commented;
“We are delighted that our collaboration with Randox has delivered another Red Dot design award for our team. Randox as a team truly value the power of design and how it can deliver better outcomes for end users. It is also wonderful to see our designs delivering positive change at the frontline of the COVID pandemic. This project was hugely collaborative, and we look forward to more collaborations in the future.”

What makes the Discovery special is its ability to conduct the full testing process, inclusive of sample preparation techniques such as extraction, purification, amplification and detection, in one highly intelligent, fully integrated space. The preparation of COVID-19 samples before testing was once lengthy and time-consuming, requiring a separate, sterilized laboratory for each stage, but can now be conducted on-board and by the fully automated Discovery platform, allowing a single operator to run multiple molecular tests simultaneously.
Combining almost 40 years of diagnostics into one platform, bringing multiple labs into one the COVID-19 diagnostic analyser is the first of its kind to combine sample preparation techniques and Biochip Technology.
Professor Dr. Peter Zec, Red Dot CEO, commented;
“The winners of the Red Dot Award: Product Design 2021 were particularly impressive this year. The design of their products is excellent, in terms of both the aesthetic and the functionality. It’s not easy to prevail in such a strong field of competitors and to win over our jury. Consequently, I want to congratulate the laureates very sincerely on their success.”
For further information please email randoxpr@randox.com
Want to know more?
Contact us or visit our find out more about the Randox Discovery
Related Products
Randox Discovery
COVID 19 Product Overview
COVID 19 QPCR ASSAY
VIRAL RNA EXTRACTION KIT
MAB9960
Celebrating World Antimicrobial Awareness week!

It’s World Antimicrobial Awareness week!
Antimicrobial resistance occurs when bacteria, viruses, fungi, and parasites resist the effects of medications, making common infections harder to treat and increasing the risk of disease spread, severe illness and death. As a result of drug resistance, antibiotics and other antimicrobial medicines become ineffective and infections become increasingly difficult or impossible to treat.
Randox want to take part in the global campaign that is celebrated annually to improve awareness and understanding of Antimicrobial. We have interviewed one of our Molecular specialists, Dr Dwaine Vance on how our revolutionary Randox products aid in the fight against AMR.
We are urging the public to help raise awareness of antimicrobial resistance. Randox is committed to the ongoing development of products and services as well as our research into numerous disease areas to improve health worldwide.
To find out more, visit- www.randox.com or email us- market@randox.com
Rapid PCR MRSA/SA testing now available on Vivalytic
Rapid PCR MRSA/SA testing now available on Vivalytic
Providing a quick diagnosis of methicillin resistant at the point of the care, the latest addition to the Vivalytic portfolio of tests, not only provides rapid RT-PCR results in 53 minutes but differentiates whether the bacterial strain is methicillin-resistant (MRSA) or methicillin-sensitive (MSAA) which promotes targeted therapy.
MRSA is a major multi-resistant nosocomial pathogen worldwide with the WHO estimating that the mortality rate of patient infection rates is around 50% higher compared with patients who have been infected by non-resistant Staphylococcus aureus strains.1 Moreover, the extensive period of hospitalisation, morbidity, and the associated medical costs increase significantly with an MRSA infection.2
Introducing MRSA to the vivalytic portfolio can provide high quality answers, anywhere and anytime improving patient pathways and the need for care. Significantly, introducing rapid MRSA screening at both ward level, emergency settings and before hospital elective surgery procedures allow for an effective response to identifying whether the bacteria strain is methicillin-sensitive (MSSA) or -resistant.
Making a point to care, the rapid essence and speed of Vivalytic not only showcase technology but the ability to contribute to current health risks by preventing contamination, breaking the chain of infection, and again fighting the silent pandemic of antimicrobial resistance (AMR) & superbugs.
The treatment on the front line today looks at increasing empirical antibiotic prescribing and increasing drug-resistant outbreaks. AMR is growing rapidly, with superbugs threatening the ability to treat common infectious diseases appropriately. The COVID-19 pandemic has elevated concerns over AMR and antibiotic-associated adverse events, with surges in antibiotic prescribing, hospitalisations, and drug-resistant bacterial transmissions.
Speed is key here – since the result of diagnostics with culture sampling, which is the current traditional method for MRSA testing is only available after one to three days, this PCR test for the point of care is ideal as an additional tool when speed is of the essence.
Few points to note about the current Vivalytic panel for MRSA/SA detection:
- By using one single cartridge, the Vivalytic MRSA/SA test detects and differentiates between MRSA and MSSA DNA to aid in the diagnosis of MRSA infection in a speedy manner so that appropriate antibiotic treatment can be applied, and complications prevented.
- Detection Method: Real-Time PCR
- Result Time: 53 minutes
- Sample Volume: 600 μl
- Sample Type: Nasal- or oropharyngeal swab sample

DETECTABLE DNA PATHOGENS: | SPECIFIC GENE TARGETS: |
---|---|
Methicillin-resistant Staphylococcus aureus (MRSA) | SCCmec/orfX junction |
Methicillin-sensitive Staphylococcus aureus (MSSA) | mecA/ mecC, SA422 |
Making this happen, The MRSA/SA rapid test on Vivalytic by Bosch, a point of care platform brought to the market by Randox Laboratories. The Vivalytic system is a fully automated, cartridge-based platform capable of both Hi-Plex and Lo-Plex infectious disease testing. Each easy-to-use cartridge contains all necessary reagents, is fully-sealed to minimise risk and can be conveniently stored at room temperature.
The Vivalytic consolidates the full molecular workflow into a small benchtop platform, capable of extraction, PCR amplification and detection. It follows an easy 4 step process from sample entry to results and with the gold standard PCR testing. With most up to date technology, the Vivalytic has wireless connectivity, with no peripherals required, making a unique space saving and hygienic solution. Handling and utilisation are simple and medical professionals require only minimal training.

For more information on the Vivalytic, why not visit our webpage- https://www.randox.com/vivalytic-molecular-point-of-care/
For more information on our new MRSA test, please contact market@randox.com
ABOUT RANDOX
NEWS
VACANCIES
OUR PEOPLE
Biomarkers to assess the risk of bladder cancer in patients presenting with haematuria are gender-specific
Vivalytic Brochure Sep 22
Identification and Differentiation of Viral and Bacterial Respiratory Infection to Guide Antibiotic Stewardship

Identification and Differentiation of Viral and Bacterial Respiratory Infection to Guide Antibiotic Stewardship
The development of point-of-care testing is critical in the identification and differentiation between bacterial and viral respiratory infections. Defining the indications of infection to improve antibiotic stewardship, ensures that patients are protected from unnecessary antibiotic use and antibiotic resistance. It has been shown that particular protein biomarkers, such as myxovirus resistance protein (MxA) and C-reactive protein (CRP), differentiate infections between bacterial and viral. Using point-of-care platforms, such as Randox’s VeraSTAT, for detection of these protein biomarkers may provide more rapid and cost-effective discriminating tools.
The treatment of bacterial and viral infections can differ significantly, however people are often treated with empirical antibiotics due to a lack of paid and accurate testing. Although early intervention of infection is urgent, current diagnostic methods are either time intensive or inaccurate. The challenges clinicians are faced with in the differentiation of viral or bacterial respiratory infection can lead to delayed diagnosis, misappropriation of antibiotics and increased healthcare costs.
MxA protein has the potential to greatly enhance the rapid detection of viral respiratory infections as it increases significantly when there is actuate viral infection. CRP is the dominant acute phase protein often used to guide treatment of a bacterial infection or inflammation associated with tissue injury, inflammatory disorders, and associated diseases.

CRP & MxA together, allow clinicians to make appropriate decisions in supporting antimicrobial stewardship and guide the appropriate use of antibiotics, saving time performing unnecessary tests, providing unnecessary treatment which missing the opportunity to provide the right treatment in a timely manner.
The Randox VeraSTAT is a simple, accurate, portable point of care device which delivers rapid results via the use of patented cathodic electrochemiluminescence technology (C-ECL). Designed with the aim of offering users the next generation of rapid diagnosis, the VeraSTAT eliminates the requirement to send samples to a laboratory and instead returns results in as little as 6 minutes.
- Eliminates delays in sending samples to the lab and facilitate immediate decision making at the point of care.
- Lightweight, portable and convenient, the Randox VeraSTAT can be used in a variety of locations to deliver results as required, such as a GP surgery or Emergency Department.
- Intuitive user interface guides the operator through the entire testing process.
- All necessary reagents are conveniently included in each single use, sealed cassette with no preparation required. All necessary consumables are supplied with the kit.
- The Randox VeraSTAT allows for results to be exported via Bluetooth connectivity.
- Flexible test menu comprising of a range of immunoassay, protein, inflammatory, diabetes & infectious disease markers.
Novel testing approaches identifying the type of infection at the point of care are essential in accurately guiding appropriate antibiotic treatment. Although these tests can’t determine what type of viral or bacterial infection a patient has, it will determine whether the infection is viral or bacterial, further testing is then carried out to determine what type of pathogen the patient has via PCR – the gold standard. The ability to distinguish between viral and bacterial infections is the most effective guide for clinical decision making and is an innovative tool for antibiotic stewardship.
References
1 – Fleming-Dutra K.E., Hersh A.L., Shapiro D.J. Prevalence of inappropriate antibiotic prescriptions among US ambulatory care visits, 2010–2011. JAMA. 2016;315:1864–1873. doi: 10.1001/jama.2016.4151.
2 – Cals JW, Hopstaken RM, Butler CC, Hood K, Severens JL, Dinant GJ. Improving management of patients with acute cough by C-reactive protein point of care testing and communication training (IMPAC3T): study protocol of a cluster randomised controlled trial. BMC Fam Pract. 2007;8:15.
3- New report calls for urgent action to avert antimicrobial resistance crisis [Internet]. World Health Organization. World Health Organization; 2019
4 – Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol. (2019) 51:72–80. doi: 10.1016/j.mib.2019.10.008
For more enquiries please contact the Marketing team: market@randox.com