The Importance of Maintaining Regular Dietary Patterns to reduce CVD risk

Home - cardiovascular risk

The Importance of Maintaining Regular Dietary Patterns to reduce CVD risk

Cardiovascular disease (CVD) is the leading cause of mortality worldwide. An estimated 17.9 million people died from some form of CVD in 2019, accounting for 32% of all-cause mortality that year1. Associations between diet and risk of cardiovascular complications have long been established, largely relating to alterations in lipid profiles.

For as long as anyone can remember, breakfast has been considered the most important meal of the day. Previous studies2 have shown an association between skipping breakfast and increased CVD risk prompting recommendations that up to 30% of one’s daily energy intake should be consumed during the first meal of the day. It has been reported that over 25% of adults skip breakfast. These individuals are often socioeconomically disadvantaged, shift workers, individuals who work particularly long hours, those who suffer from depression or those with poor health literacy2. Another study3 showed that skipping breakfast, when compared with consuming a high-energy breakfast, was associated with a 1.6x and 2.6x higher probability of non-coronary and general atherosclerosis respectively, when all other CVD risk factor had been controlled. This suggests a close relationship between eating breakfast and reducing CVD risk, however, the mechanisms and magnitude of this relationship are poorly understood.

Small, dense low-density lipoprotein cholesterol (sdLDL-C) is a smaller form of LDL-C which boasts greater propensity for uptake by arterial tissue, increased proteoglycan binding, and increased susceptibility for oxidation4. sdLDL-C concentration is strongly associated with CVD risk, yet once again, the mechanisms of this association remain enigmatic. It is thought that all of the metabolic changes associated with alterations in sdLDL-C concentration collectively contribute to the increased risk of CVD, with the main drivers being its propensity for uptake by arterial tissues and its long circulatory stability4

Skipping breakfast and sdLDL-C

A recent study investigated the relationship between skipping breakfast and the effects on lipid parameters5. In a cohort of around 28’000 people from the Japanese population, this study looked at the several markers, including sdLDL-C, to develop an understanding of the importance of regular dietary patterns for reducing the risk of CVD.

The study participants were divided into two main categories: breakfast eaters and breakfast skippers. These categories were further subdivided to differentiate men and women, over and under 55 years old, and those who eat staple products (rice, pasta, bread, etc.) and those who did not. The participants contributed blood samples which were tested for several cardiovascular biomarkers: Creatinine, Liver ALT, Total Cholesterol, Triglycerides, direct LDL-C, HDL-C and sdLDL-C.

They found that around 26% of men and 16.9% of women skipped breakfast regularly. Of these, most were considered young and had significant increases in concentration of triglycerides, LDL-C and sdLDL-C compared with those who ate breakfast almost every day.

Table 1. Median concentration of triglycerides, LDL-C, and sdLDL-C for breakfast skippers and eaters5

Analyte Breakfast Skippers (mg/dL) Breakfast Eaters (mg/dL)
Triglycerides 103 93
LDL-C 124 122
sdLDL-C 34.7 32

This investigation also revealed that in this cohort, 20% of men and 27.3% of women did not regularly consume staple foods as part of their diet and had higher median sdLDL-C concentration.

Table 2. Median concentration of sdLDL-C in men and women who eat or skip staple food products in their diet5

Gender Staple Skippers (mg/dL) Staple Eaters (mg/dL)
Men 34.1 31.6
Women 25.8 24.7

The data from this study supports the finding that individuals who skipped breakfast had higher sdLDL-C concentrations than those who ate breakfast consistently. Skipping breakfast can therefore be associated with troublesome lipid parameters in both genders and all age groups in the Japanese population. This study suggests that eating breakfast every day is crucial to maintain beneficial lipid parameters and reduce the risk of developing CVD.

The data also show that individuals who skipped staple foods in their meals presented with higher concentrations of sdLDL-C and a higher sdLDL-C/LDL-C ratio, in men and postmenopausal women, when compared with those who included staple foods in their meals. It is becoming increasingly common to remove staple foods from one’s diet due to their high carbohydrate content and the prevalence of low-carbohydrate diets. This data exhibits the importance of maintaining a nutritionally balanced diet to help reduce the risk of developing CVD.

As the first large scale study of its kind, this analysis provides clear insight into the increased risk of CVD associated with not only skipping breakfast, but failing to maintain a nutritionally balanced diet. The major limitation of this analysis is that it only includes individuals from the Japanese population and the same affects may not be seen in populations from other ethnicities. Therefore, further in-depth analysis is required to confirm these findings in other ethnicities

 

Randox sdLDL-C Assay

The Randox sdLDL-C assay employs the clearance method which displays good correlation with the gold standard in sdLDL-C quantification, giving laboratories increased confidence in their results first time, every time. Supplied as liquid ready-to-use reagents, this this test can be applied to a wide range of clinical chemistry analysers, producing results in as little as 10 minutes. Relevant controls and calibrators are also available from Randox as part of the Acusera range.

Randox sdLDL-C Assay Key Features

  • Direct, automated test for convenience and efficiency.
  • Rapid analysis results can be produced in as little as ten minutes, facilitating faster patient diagnosis and treatment plan implementation.
  • Liquid ready-to-use reagents for convenience and ease of use.
  • Applications available detailing instrument specific settings for a wide range of clinical chemistry analysers.
  • sdLDL-C controls and calibrator available.

References

  1. World Health Organization. Cardiovascular Diseases. World Health Organization. Published June 11, 2021. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
  2. Ofori-Asenso R, Owen AJ, Liew D. Skipping Breakfast and the Risk of Cardiovascular Disease and Death: A Systematic Review of Prospective Cohort Studies in Primary Prevention Settings. Journal of Cardiovascular Development and Disease. 2019;6(3):30. doi:https://doi.org/10.3390/jcdd6030030
  3. Uzhova I, Fuster V, Fernández-Ortiz A, et al. The Importance of Breakfast in Atherosclerosis Disease. Journal of the American College of Cardiology. 2017;70(15):1833-1842. doi:https://doi.org/10.1016/j.jacc.2017.08.027
  4. Rizvi AA, Stoian AP, Janez A, Rizzo M. Lipoproteins and cardiovascular disease: An update on the clinical significance of atherogenic small, dense LDL and new therapeutical options. Biomedicines. 2021;9:1579. doi:https://doi.org/10.3390/biomedicines9111579
  5. Arimoto M, Yamamoto Y, Imaoka W, et al. Small dense low-density lipoprotein cholesterol levels in breakfast skippers and staple food skippers. Journal of Atherosclerosis and Thrombosis. 2023;30. doi:https://doi.org/10.5551/jat.64024

For more information on our sdLDL-C assay or any of our other products, please contact us at: marketing@randox.com

 

 

 

Randox Reagents H-FABP & AKI

Lipoprotein(a) Foundation commend celebrity personal trainer, Bob Harper, as he speaks out about the risk of Lp(a)

The Lipoprotein(a) Foundation have commended health and fitness expert Bob Harper for speaking out after recently suffering a heart attack. The celebrity personal trainer and host of the US television series ‘The Biggest Loser’, has revealed that high levels of Lp(a) were responsible for the heart attack he suffered at the age of 51 at the beginning of this year.1

Harper had been completing a normal workout at his gym when he suffered full cardiac arrest. Luckily, two doctors were in the vicinity who saved his life by performing CPR and using an Automated External Defibrillator (AED). In an interview following his heart attack, Harper has said,

“I’ve learned a lot about the fact genetics does play a part in this, it is so important to know your health… I’m a guy that lives a very healthy lifestyle, very regimented, I work out all the time, but there were things going on inside of my body that I needed to be more aware of and I strongly encourage anyone that’s listening right now to go to their doctor, get their cholesterol checked, see what’s going on on the inside”.

Scroll down to watch the interview in full.

What is Lp(a)?

Lp(a) is a particle which is produced in the liver and found in the blood which carries cholesterol, fats and proteins. Levels of Lp(a) in individuals are genetically determined, and are not affected by diet, exercise or lifestyle changes.2

So how does a seemingly fit and healthy person have a heart attack at the age of 51?

Lp(a) is currently the strongest inherited risk factor for heart attack and stroke, with one in five people globally inheriting high Lp(a).1 Levels of Lp(a) are not routinely tested in standard cardiovascular assessments, and despite the particle itself being an altered form of LDL cholesterol, standard cholesterol tests do not reveal inherited Lp(a) levels as it is independent from total cholesterol and LDL levels.3

High Lp(a) can also be unrelated to other common risks factors of cardiovascular diseases for example, smoking, diet, diabetes, high blood pressure and lack of exercise. This is why seemingly healthy individuals can have high Lp(a) in their genes and still be at high risk of cardiovascular diseases.

Why is Lp(a) not routinely measured if high levels pose such a risk?

The widespread use of Lp(a) as an independent risk factor for cardiovascular disease risk has, until recently, been hindered by the lack of internationally accepted standardisation and the fact that many commercial Lp(a) methods suffer from apo(a) size related bias, potentially leading to patient misclassification.

The size of the apo(a) protein is genetically determined and varies widely hence, levels of Lp(a) can vary up to 1000-fold between individuals.4 To find out more about the clinical significance of Lp(a), please refer to the section below entitled ‘For Health Professionals’.

What can you do if you have high Lp(a)?

Research has shown that lowering Lp(a) could significantly reduce the impact of cardiovascular diseases. A recent study published in the American Heart Association journal, Arteriosclerosis, Thrombosis and Vascular Biology, found that reducing high Lp(a) could potentially prevent up to 1 in 14 cases of myocardial infarction (heart attack) and 1 in 7 cases of aortic valve stenosis.5 Of those studied, nearly one third of heart attacks and half of all cases of aortic stenosis were attributed to high Lp(a).6 This study demonstrates the clinical significance of measuring Lp(a), making it a major independent genetic risk factor for cardiovascular diseases.

Why test Lp(a)?

Lp(a) will be tested as part of a lipid profile if: there is a strong family history of CVD, a patient has existing heart or vascular diseases, a patient has an inherited predisposition for high cholesterol or if a person has had a stroke or heart attack but has normal lipid levels.7

Dr Christie Ballantyne, Chief of Cardiology at Baylor College of Medicine, has said “the most important part of knowing your Lp(a) level is understanding your overall risk and finding the right lifestyle modifications or medications to target all the other traditional risk factors. Those risk factors become even more important to monitor when your Lp(a) levels are high”.8

For patients

If you are concerned that you may be at risk of having elevated levels of Lp(a) due to your family history, ask your doctor or medical provider to test lipoprotein (a), along with other lipid tests, to clinically evaluate your risk of developing cardiovascular diseases.

For health professionals

Click below for information regarding the challenges associated with the measurement of Lp(a) and the clinical significance it holds.

The widespread use of Lp(a) as an independent risk factor for cardiovascular disease risk has, until recently, been impeded by the lack of internationally accepted standardisation and the fact that many commercial Lp(a) methods suffer from apo(a) size related bias, potentially leading to patient misclassification. The size of the apo(a) protein is genetically determined and varies widely hence, levels of Lp(a) can vary up to 1000-fold between individuals.4 

As a result, international criteria has been set to overcome these challenges. The International Federation of Clinical Chemistry (IFCC) Working Group on Lp(a) recommends that laboratories use assays which do not suffer from apo(a) size-related bias, in order to minimise the potential risk of misclassification of patients for coronary heart disease. The Lipoprotein(a) Foundation has referenced Marcovina and Albers (2016) as their recommendation for the best Lp(a) test.9 This recommendation is a result of the following conclusions:

  • Robust assays based on the Denka method are available, which are reported in nanomoles per litre (nmol/L) and are traceable to WHO/IFCC reference material
  • Five point calibrators with accuracy assigned target values will minimise the sensitivity to apo(a) size

A number of guidelines are in place for the testing of Lp(a) in patients.

-The European Guidelines for Management of Dyslipidaemia state that Lp(a) should be measured in individuals considered at high risk of CVD or with a strong family history of premature CVD.

-The European Atherosclerotic Society suggest that Lp(a) should be measured once in all subjects at intermediate or high risk of CVD/CHD who present with10 :

1. Premature CVD
2. Family hypercholesterolaemia
3. A family history of premature CVD and/or elevated Lp(a)
4. Recurrent CVD despite statin treatment
5.
≥3% 10-year risk of fatal CVD according to the European guidelines
6.  ≥10% 10-year risk of fatal and/or non-fatal CHD according to the US guidelines

-EAS Consensus Panel states the evidence clearly supports Lp(a) as a priority for reducing cardiovascular risk, beyond that associated with LDL cholesterol.  Clinicians should consider screening statin-treated patients with recurrent heart disease, in addition to those considered at moderate to high risk of heart disease.

  • The Randox Lp(a) assay is one of the only methodologies on the market that detects the non-variable part of the Lp(a) molecule and therefore suffers minimal size related bias – providing more accurate and consistent results. The Randox Lp(a) kit is standardised to the WHO/ IFCC reference material SRM 2B and is closest in terms of agreement to the ELISA reference method.
  • Five calibrators with accuracy-based assigned target values are provided – which accurately reflect the heterogeneity of isoforms present in the general population
  • Measuring units available in nmol/L upon request
  • Highly sensitive and specific – method for Lp(a) detection in serum and plasma
  • Applications are available for a wide range of biochemistry analysers – which detail instrument-specific settings for the convenient use of Randox Lp(a) on a variety of systems
  • Liquid ready-to-use reagents – for convenience and ease-of-use

For further information on Lp(a), click here or email: reagents@randox.com

Watch the interview with Bob Harper here:

1. Lipoprotein(a) Foundation, Lipoprotein(a) Foundation Thanks Bob Harper for Revealing High Lp(a) Levels Led to His Recent Heart Attack on The Dr Oz Show, 2017 Available from: http://www.businesswire.com/news/home/20170425006724/en/ [Accessed: 16 March 2017]

2. Lipoprotein Foundation, Understand Inherited Lipoprotein (a), Available from: https://goo.gl/bH5A8R [Accessed: 16 March 2017]

3. Kumar, V., Abbas, A. K. and Aster, J. C., Robbins and Cotran Pathologic Basic of Disease, (Philadelphia: Elsevier Saunders, 2015), p. 494 in Google books, https://goo.gl/VEnVX9 [Accessed 27th April 2017]

4. Kamstrup P.R., Tybjaerg-Hansen A., Steffensen R., Nordestgaard B.G. Genetically elevated lipoprotein (a) and increased risk of myocardial infarction. JAMA. Vol. 301, p. 2331-2339 (2009).

5. Afshar, M. Kamstrup, P.R., Williams, K., Snidermann, A. D., Nordestgaard, B.G., Thanassoulis, G., Estimating the Population Impact of Lp(a) Lowering on the Incidence of Myocardial Infarction and Aortic Stenosis – Brief Report., Ateriosclerosis, Thrombosis, and Vascular Biology, 2016;36:2421-2423, Available from: http://doi.org/10.1161/ATVBAHA.116.308271

6. The Lipoprotein(a) Foundation, Lipoprotein(a) Foundation Supports National Heart Valve Disease Month, Highlights Genetic Link between Lp(a) and Aortic Valve Disease, Business Wire. (2017), Available from: https://goo.gl/LhQFGj [Accessed: 16 March 2017]

7. Lab Tests Online, Lp(a), 2014, Available from: https://goo.gl/W2PWSN [Accessed: 16 March 2017]

8.Gutierrez, G., The heart attack risk factor you haven’t heard of, Baylor College of Medicine, 2017, Available from: https://goo.gl/9X4Xko [Accessed: 16 March 2017]

9. Marcovina, S.M. and Albers, J.J. Lipoprotein (a) measurements for clinical application. Lipid Res. Vol. 57, p. 526-37 (2016).

10. Nordestgaard, B. G., Chapman, M. J., Ray, K., Bore´n, J., Andreotti, F., Watts, G. F., Ginsberg, H., Amarenco, P., Catapano, A., Descamps, O. S., Fisher, E., Kovanen, P. T., Kuivenhoven, J. A., Lesnik, P., Masana, L., Reiner, Z., Taskinen, M. R., Tokgozoglu, L., and Tybjærg-Hansen, A., for the European Atherosclerosis Society Consensus Panel. Lipoprotein(a) as a cardiovascular risk factor: current status. European Heart Journal. Vol. 23, p. 2844-2853 (2010).

lipoprotein(a)


Request a meeting
×
Make an Enquiry - RX series
×
Make an Enquiry - Reagents
×
Kit Insert Request - Reagents
  • Signing up to our mailing list is quick and easy. We do not wish to send you any spam or junk email, therefore, you can expect to receive mailshots including new product launches and updates, market trends, attendance at key industry events and much more. Randox Laboratories promise never to sell your data and we will keep all your details, safe and secure. Read more in our Privacy Policy.
×
Kit Insert Request - Reagents
  • Signing up to our mailing list is quick and easy. We do not wish to send you any spam or junk email, therefore, you can expect to receive mailshots including new product launches and updates, market trends, attendance at key industry events and much more. Randox Laboratories promise never to sell your data and we will keep all your details, safe and secure. Read more in our Privacy Policy.
×
Make an Enquiry - Reagents
×
Make an Enquiry - Quality Control
×
Make an Enquiry - RIQAS
×
Make an Enquiry - RIQAS
×
Make an Enquiry - Quality Control
×
Make an Enquiry