Superior Performance & Unique Tests
Superior Performance & Unique Tests
Superior Performance & Niche Reagents
Randox offer a range of high performance, unique and niche reagents that are designed to enhance your laboratory testing capabilities.
Our impressive portfolio of high performance & unique tests together with our standard assays sets us apart in the in vitro diagnostics market. Our superior performance reagents and methodologies deliver highly accurate and specific results, that can facilitate earlier diagnosis of disease states with confidence and precision.
Benefits of High Performance Reagents

Reduce Costs
We can help create cost-savings for your laboratory through excellent stability, eliminating the requirement for costly test re-runs. Our quality reagents also come in a range of different kit sizes to reduce waste and for your convenience.

Confidence in Patient Results
Our traceability of material and extremely tight manufacturing tolerances ensure uniformity across our reagent batches. All of our assays are validated against gold-standard methods.

Applications Available
Applications are available detailing instrument-specific settings for the convenient use of the Randox superior performance & unique assays on a wide variety of clinical chemistry analysers.

Superior Performance Offering
Randox offer an extensive range of 115 assays across routine and niche tests, and cover over 100 disease makers. Our high performance assays deliver superior methodologies, more accurate and specific results compared to traditional methods.

Reduce Labour
Reduce valuable time spent running tests. Randox reagents come in liquid ready-to-use formats and various kit sizes for convenient easy-fit. Barcode scanning capabilities for seamless programming.

Unique Offering
Our range of unique assays means that Randox are one of the only manufacturers to offer these tests in an automated biochemistry format.
The in vitro diagnostics market is continuously adapting to the changes in laboratory testing. Consequently, Randox have continued to reinvest in R&D to produce superior performance & unique tests offering laboratories choice, quality and innovation.

The Randox Lp(a) assay is calibrated in nmol/l and traceable to the WHO/IFCC reference material (IFCC SRM 2B) and provides an acceptable bias compared with the Northwest Lipid Metabolism Diabetes Research Laboratory (NLMDRKL) gold standard. A five-point calibrator with accuracy-based assigned target values (in nmol/l) is available, accurately reflecting the heterogeneity of the apo(a) isoforms.

The Randox bile acids test utilises an advanced enzyme cycling method which displays outstanding sensitivity and precision when compared to traditional enzymatic based tests. The Randox 5th Generation Bile Acids test is particularly useful in paediatrics where traditional bile acids tests are affected by haemolytic and lipaemic samples.

A superior assay from Randox, the vanadate oxidation method offers several advantages over the diazo method, including less interference by haemolysis and lipaemia, which is particularly evident for infant and neonatal populations.

The Randox Fructosamine assay utilises the enzymatic method which offers improved specificity and reliability compared to conventional NBT-based methods. The Randox enzymatic method does not suffer from non-specific interferences unlike other commercially available fructosamine assays.

Soluble transferrin receptor (sTfR) is a marker of iron status. In iron deficiency anaemia, sTfR levels are significantly increased, however remain normal in the anaemia of inflammation. Consequently, sTfR measurement is useful in the differential diagnosis of microcytic anaemia.
Email Us
Get in touch today at reagents@randox.com
Need Instructions?
Kit Inserts are available to download for free on our online portal.
Buy Online
Order your cardiology kits today by visiting our online store
Featured Reagent – sPLA₂-IIA
Featured Reagent | sPLA2-IIA
Back to Reagents Resource Hub>
Benefits
A niche assay from Randox which means that Randox is one of the only manufacturers to offer an sPLA2-llA mass assay in an automated biochemistry format
Applications available detailing instrument-specific settings for the convenient use of the Randox sPLA2-IIA assay on a wide range of clinical chemistry analysers
Complementary controls and calibrators available offering a complete testing package
Automated assay which removes the inconvenience and time consumption associated with traditional ELISA based testing
Excellent correlation coefficient of r = 0.95 when compared against other commercially available methods
Liquid ready-to-use format for convenience and ease of use
Latex enhanced immunoturbidimetric method delivers high performance and confidence in results
NOTE: sPLA2 -IIA Assay – For Research Use Only
Clinical Significance
sPLA2-llA production of fatty acids and biologically active phospholipids plays an important role in platelet, monocyte, and endothelial activation, processes known to be critical steps in atherogenesis.1
Unlike traditional cardiac biomarkers used to predict adverse outcomes in patients with acute coronary syndrome (ACS), sPLA2-llA has been shown to act at multiple pathways involved in atherogenesis, from lipid oxidation to modulation of vascular & inflammatory cell activation and apoptosis.2
Biological Significance of sPLA2-IIA
Key observations through research has found that sPLA2-llA mediated modification of lipoproteins plays a role in the development of atherosclerosis. The surface of both low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) is surrounded by phosphatidylcholine (PC) a type of phospholipid which has been scientifically proven to serve as a good extracellular target for several isoforms of sPLA2-llA. sPLA2-llA works by hydrolysing these phospholipids resulting in the production of free fatty acids and lysophophatidylcholine (LPC) which can generate pro-inflammatory actions, accelerating atherosclerosis.1
Hydrolysis of LDL-C correlates with the production of the more atherogenic, small dense LDL cholesterol (sdLDL-C). The sPLA2-llA -processed low-density lipoprotein (LDL) contains a large amount of lysophospholipids and exhibit the property of “small-dense” or “modified” LDL, which facilitates foam cell formation from macrophages. Research has shown that high plasma levels of sdLDL-C compared to less dense, larger LDL-C create a higher risk of coronary heart disease.
Cardiovascular Disease
Regular cardiovascular screening is important to ensure that cardiac risk factors are detected at the earliest possible stages. Cardiovascular disease (CVD) encompasses a number of diseases of the heart and blood vessels. Four of the main types of CVD include: coronary heart disease (CHD), cerebrovascular disease (CVA), peripheral arterial disease (PAD) and aortic disease. It is vital that at risk patients are diagnosed as quickly and efficiently as possible to ensure effective treatment plan implementation.4
The early diagnosis of CVD aids in reducing the risk of a secondary cardiovascular event and to ensure the patient receives appropriate treatment to prevent premature deaths. Early risk assessment is particularly important in people who are at a greater risk of CVD. This is evaluated through the identification of one or more risk factors including: hypertension, diabetes or hyperlipidaemia. 3 ,5
It is believed that by 2030, almost 23.6 million people will die from CVD, mainly CHD and CVA, and is projected to remain the single leading cause of death. This provides further confirmation that early diagnosis is vital to prevent and reduce the number of deaths attributed to CVD.3
Biological Significance of sPLA2-IIA
Key observations through research has found that sPLA2-llA mediated modification of lipoproteins plays a role in the development of atherosclerosis. The surface of both low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) is surrounded by phosphatidylcholine (PC) a type of phospholipid which has been scientifically proven to serve as a good extracellular target for several isoforms of sPLA2-llA. sPLA2-llA works by hydrolysing these phospholipids resulting in the production of free fatty acids and lysophophatidylcholine (LPC) which can generate pro-inflammatory actions, accelerating atherosclerosis.1
Hydrolysis of LDL-C correlates with the production of the more atherogenic, small dense LDL cholesterol (sdLDL-C). The sPLA2-llA -processed low-density lipoprotein (LDL) contains a large amount of lysophospholipids and exhibit the property of “small-dense” or “modified” LDL, which facilitates foam cell formation from macrophages. Research has shown that high plasma levels of sdLDL-C compared to less dense, larger LDL-C create a higher risk of coronary heart disease.
Cardiovascular Disease
Regular cardiovascular screening is important to ensure that cardiac risk factors are detected at the earliest possible stages. Cardiovascular disease (CVD) encompasses a number of diseases of the heart and blood vessels. Four of the main types of CVD include: coronary heart disease (CHD), cerebrovascular disease (CVA), peripheral arterial disease (PAD) and aortic disease. It is vital that at risk patients are diagnosed as quickly and efficiently as possible to ensure effective treatment plan implementation.4
The early diagnosis of CVD aids in reducing the risk of a secondary cardiovascular event and to ensure the patient receives appropriate treatment to prevent premature deaths. Early risk assessment is particularly important in people who are at a greater risk of CVD. This is evaluated through the identification of one or more risk factors including: hypertension, diabetes or hyperlipidaemia. 3 ,5
It is believed that by 2030, almost 23.6 million people will die from CVD, mainly CHD and CVA, and is projected to remain the single leading cause of death. This provides further confirmation that early diagnosis is vital to prevent and reduce the number of deaths attributed to CVD.3
References
[1] Secreted phospholipase A2, lipoprotein hydrolysis, and atherosclerosis: integration with lipidomics. Kei, Yamamoto, et al. 7, s.l. : Analytical and Bioanalytical Chemistry, 2011, Vol. 400.
[2] Circulatory secretory phospholipase A2 activity predicts recurrent events in patients with severe acute coronary syndromes. . Mallat, Ziad, Steg, Gabriel and Benessiano, Joelle. 7, s.l. : Journal of the American College of Cardiology, 2005, Vol. 46.
[3] World Health Organization. Cardiovascular Diseases. World Health Organization. [Online] World Health Organization, May 17, 2017. [Cited: August 21, 2018.] https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
[4] National Health Service (NHS). Cardiovascular disease. [Online] September 17, 2018. [Cited: November 30, 2018.] https://www.nhs.uk/conditions/cardiovascular-disease/.
[5] National Institute for Health and Care Excellence (NICE). Cardiovascular disease risk assessment and prevention. [Online] no date. [Cited: ovember 30, 2018.] https://bnf.nice.org.uk/treatment-summary/cardiovascular-disease-risk-assessment-and-prevention.html.
MORE FEATURED REAGENTS
Read more about our vast range of assays
Securing the future with in vitro diagnostic tests
The aim of Biomedical Science Day is to raise the public’s awareness of the importance of biomedical science and the vital role it plays in the world. Randox are dedicated to improving healthcare worldwide through placing a major focus on research and development. The Randox scientists work in pioneering research into a range of common illnesses such as cancer, cardiovascular disease and Alzheimer’s disease.
A recent blog from Doris-Ann Williams, the Chief Executive at BIVDA, explains how “increased funding is not enough to sustain the NHS” and how “we need to make better use of in vitro diagnostics to ensure a successful future”.
The National Health Service (NHS) is a publicly funded, primarily taxation, national healthcare system in the United Kingdom. It was first set-up on July 5th, 1948 by Aneurin Bevan as he believed that everyone, regardless of wealth, should have access to good healthcare. Whilst the NHS is an extremely important aspect of healthcare in the UK, in vitro diagnostics are the heart and soul of the healthcare system as healthcare professionals not only rely on blood tests to diagnose and treat patients, but also to rule out the different contributing causes to a disease state. In vitro diagnostics also plays a key role in monitoring chronic disease states. In vitro diagnostics can also aid in reducing hospital stays, reduce misdiagnosis and support patients in looking after their own health and to deliver personalised treatment plans.
The Randox scientists have developed several niche assays to improve patient diagnosis, monitor treatment and eliminate misdiagnosis.
Adiponectin
Adiponectin is a protein hormone secreted by adipocytes with anti-inflammatory and insulin-sensitising properties. It plays an important role in a number of metabolic processes including glucose regulation and fatty acid oxidation. Adiponectin levels are inversely correlated with abdominal visceral fat which have proven to be a strong predictor of several pathologies, including: metabolic syndrome, type 2 diabetes mellitus (T2DM), cancers and cardiovascular disease (CVD). For more information on the importance of testing Adiponectin levels, check out our Adiponectin Whitepaper.
Cystatin C
Cystatin C is an early risk marker for renal impairment. The most commonly run test for renal impairment is Creatinine. Creatinine measurements have proven to be inadequate as certain factors must be taken into consideration, including age, gender, ethnicity etc. The National Institute for Health and Care Excellence (NICE) have updated their guidelines, which now recommends Cystatin C as a more superior test for renal impairment due to its higher specificity for significant disease outcomes than those based on Creatinine. For more information on the importance of testing Cystatin C levels, check out our Cystatin C Whitepaper.
Small-dense LDL Cholesterol (sdLDL-C)
LDL Cholesterol (LDL-C) consists of two parts: the large and buoyant LDL Cholesterol and the small and dense LDL Cholesterol. Whilst all LDL-C transports triglycerides and cholesterol to bodily tissues, their atherogensis varies according to their size. As sdLDL-C is small and dense, they can more readily permeate the arterial wall and are more susceptible to oxidation. Research indicates that individuals with a predominance of sdLDL-C have a 3-fold increased risk of myocardial infarction. It has been noted that sdLDL-C carries less Cholesterol than large LDL, therefore a patient with predominately sdLDL-C particle may require nearly 70% more sdLDL-C particles to carry the same amount of cholesterol as the patient with predominately LDL-C particles. For more information on the importance of testing sdLDL-C levels, check out our sdLDL-C Whitepaper.
These three niche in vitro diagnostics tests developed by Randox scientists can aid in reducing NHS costs due to their higher performance compared to the traditional tests. Randox are constantly striving to improve healthcare worldwide.
For more information on the extensive range of Randox third-party in vitro diagnostic reagents, visit: https://www.randox.com/diagnostic-reagents/ or contact reagents@randox.com.
