Pursuing Perfection: Insights into Global IQC Practices
Pursuing Perfection: Insights into Global IQC Practices
In a time when medical laboratory personnel are pushed to their limits, internal quality control and quality management are easy to consider a nuisance. However, these processes are vital to ensure accuracy and precision in the potentially life-saving tests performed in these laboratories. Most High-to-middle-income countries have strict regulations governing quality procedures in medical laboratories, but global standardisation in these areas is lacking. Over 70% of clinical decisions are based on laboratory testing but many clinicians are unaware of the accuracy and precision limitations associated with many of these tests. This places the responsibility on laboratory staff to ensure that all results provided to clinical decision-makers are as true as possible. For this, they rely on IQC and a robust quality management system.
To determine the state of the industry, a report by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Task Force on Global Laboratory Quality (TF-GLQ) surveyed over 100 IFCC full and affiliate members, receiving responses from 46 countries1. This survey consisted of a series of multiple-choice questions in relation to quality practices in their respective countries.
Findings by IFCC Task Force on Global Laboratory Quality
90% of respondents indicated that quality standards are in use in their country, despite being mandatory in only 46.7% of those countries.
These responses are encouraging showing that at least some level of predefined QC practice is implemented even in countries that do not legislatively mandate the inclusion of quality standards. This also hints that in those countries where it is not mandatory, it may soon become a requirement to adhere to a specified QC system. Nevertheless, in countries where regulatory measures are currently absent, the rigour of the implemented quality control procedures may not be adequate to ensure the accurate reporting of results.
42.5% of respondents indicated that IQC was not run in all laboratories in their country.
These respondents indicated that IQC is run in 50-99% of laboratories in their country. This less encouraging result shows that minimum IQC practices are not implemented globally. However, due to the multiple-choice nature of this survey, it is difficult to determine how drastic this issue is. Although it does raise the question of how these laboratories verify the precision of their results.
66.7% of respondents indicated that they use assay manufacturer quality control material.
This refers to first party quality control materials which are optimised by the manufacturer for use with a specific assay, instrument or method. These controls are often manufactured from the same material as the calibrator, making them less sensitive to subtle changes in performance, allowing them to mask weaknesses in the assay in question and therefore should be considered less effective options than third-party controls. Additionally, ISO15189:2022 encourage the use of third-party controls and require laboratories seeking accreditation that do not use third party controls to provide a sufficient explanation as to why this is the case.
60% of respondents indicated that not all laboratories in their country had written IQC policies and procedures.
This highlights an important aspect of a quality management system. Without written IQC policies and procedures it is almost impossible to standardise the IQC process and corrective action across laboratory staff, never mind on a national scale. Drafting this documentation can be cumbersome, however, many organisations can be contracted to assist with the drafting and implementation of these procedures for laboratories seeking to gain accreditation.
28.6% of respondents reported that manual interpretation of the IQC data was normal practice.
Manual data interpretation also poses challenges to the standardisation of IQC processes. Written IQC policies and procedures are crucial in implementing standard acceptance criteria for IQC results. Manual data interpretation also implements restrictions on the ability to carry out more advanced statistical analysis of the QC data.
Discussion
The implementation of robust IQC practices is crucial for ensuring the trueness and precision of the results produced by a laboratory. Used correctly, IQC can monitor variability caused by instrumentation and lot changes as well as various other sources of analytical error. ISO15189:2022 provides a thorough framework for designing rigorous IQC policies and procedures, highlighting key areas such as the use of third party QC material, levels of QC material, the frequency at which IQC should be completed, matrix composition, acceptance/rejection criteria and non-conformance procedures. For more information on ISO15189:2022 accreditation, take a look at our educational guide ISO15189:2022 Updates.
The results from this survey conducted by IFCC show a clear disparity between IQC processes around the globe, displaying differences in requirements, recommendations, and legislation. Standardisation of IQC is not without its challenges. However, by striving to achieve the highest possible levels of quality, and following the guidance laid out in ISO15189:2022, laboratories can be confident in the results they provide to clinicians.
Acusera Quality Control
The Acusera range offers unbiased, independent third party quality controls for medical and research laboratories of all shapes and sizes. Our assayed controls are provided with target values for most commercially available analysers, ensuring that your test menu will be covered. With enhanced stability, commutability and consolidation, all our controls are manufactured to provide a clinically relevant challenge to your test method, aiding in ISO15189 accreditation. For more specialist laboratories, our teams are happy to discuss your requirements and help to provide bespoke quality control material, providing an extremely flexible QC range.
Acusera 24.7
Designed for use with the Acusera range of third party controls, the Acusera 24•7 software will help you monitor and interpret your QC data. Access to an impressive range of features, including interactive charts, the automatic calculation of Measurement Uncertainty & Sigma Metrics and live peer group data generated from our extensive database of laboratory participants, ensures Acusera 24•7 is the most comprehensive package available. For laboratories performing manual review of their IQC data, Acusera 24•7 provides a comprehensive yet easy-to-use platform for advanced statistical analysis and monitoring of these data.
For more information on our Acusera range of IQC material, or Acusera 24•7, feel free to reach out to us at marketing@randox.com or alternatively, browse our range of literature at the QC Resource Hub
References
- Wheeler SE, Blasutig IM, Dabla PK, et al. Quality standards and internal quality control practices in medical laboratories: an IFCC global survey of member societies. Clinical Chemistry and Laboratory Medicine (CCLM). 2023;0(0). doi:10.1515/cclm-2023-0492
World Hepatitis Day 2023
Introduction
World Hepatitis Day, observed on July 28th, serves as a crucial reminder of the ongoing battle against hepatitis (HBV), a viral infection that affects millions of people worldwide. In 2019, it was estimated that 296 million people were living with chronic hepatitis B, resulting in over 800,000 fatalities1. In this article, we will delve into the intricate mechanisms behind hepatitis, explore the viral species responsible for its occurrence, discuss methods for diagnosis, and shed light on treatment and management strategies.
Understanding Hepatitis
Hepatitis refers to the inflammation of the liver, often caused by viral infections. Among the primary hepatitis viruses are Hepatitis A, B, C, D, and E, each with distinct modes of transmission and characteristics2.
Mechanisms of Hepatitis Infection
Hepatitis A and E: Hepatitis A and E viruses are primarily transmitted via the faecal-oral route, often through contaminated food or water. Ingestion of these viruses leads to acute infection, and while self-limiting in most cases, they can cause significant morbidity and mortality in certain populations5,6.
Hepatitis B, C, and D: Hepatitis B, C, and D viruses are predominantly spread through blood and bodily fluids. Hepatitis B can also be transmitted from mother to child during childbirth which in endemic areas, HBV infection from mother to child transmission accounted for approximately half of chronic infections. These viruses can cause chronic infections, leading to long-term liver damage, cirrhosis, and an increased risk of hepatocellular carcinoma7,8.
Diagnosis of Hepatitis
Accurate and timely diagnosis of hepatitis is crucial for appropriate management. Diagnostic methods include:
Serology: Serological tests, such as enzyme immunoassays, are employed to detect specific viral antigens or antibodies in blood samples, aiding in the identification of different hepatitis viruses and determining the stage of infection9.
Nucleic Acid Testing: Highly sensitive molecular techniques like polymerase chain reaction (PCR) enable the detection and quantification of viral genetic material, aiding in the diagnosis and monitoring of chronic hepatitis10.
Treatment and Management of Hepatitis
The management of hepatitis depends on several factors, including the virus involved, the stage of infection, the presence of co-infections, and the individual patient’s health status. Treatment strategies encompass:
Antiviral Medications: For hepatitis B and C, antiviral drugs such as interferons and direct-acting antivirals have revolutionized the treatment landscape, offering higher cure rates and improved outcomes11,12.
Supportive Care: Hepatitis patients may require supportive care to alleviate symptoms, maintain proper nutrition, and manage complications. Vaccination against hepatitis A and B is highly recommended for prevention13.
Liver Transplantation: In cases of end-stage liver disease or hepatocellular carcinoma resulting from chronic hepatitis, liver transplantation may be considered a lifesaving option14.
Randox Hepatitis Solutions
Acusera
Acusera provides a range of positive and negative serology controls comprising various infectious diseases including Hepatitis. The table below details the suitable controls, and more information can be found on our website: Serology Quality Controls – Randox Laboratories
RIQAS
The RIQAS HIV/Hepatitis EQA programme is designed to monitor the performance of tests used to detect HIV/Hepatitis antibodies and specific antigens. All samples are conveniently supplied liquid ready-to-use and are suitable for qualitative methods of analysis.
Parameters:
- Anti-HIV-1
- Anti-HCV
- Anti-HTLV-II
- HBsAg
- Anti-HIV-2
- Anti-HBc
- Anti-HTLV-1&2 (combined)
- Anti-HIV-1&2 (combined)
- Anti-HTLV-I
- Anti-CMV
- Anti-HAV IgM
- Anti-HAV (Total)
- Anti-HBc (Total)
- Anti-HBe (Total)
- Anti-HBs (Total)
- P24
For more information, please visit our website at: HIV Hepatitis EQA | RIQAS (randox.com)
Qnostics
Monitoring for the presence of Blood Borne Virus (BBV) nucleic acid is an essential parameter in guiding clinical treatment and patient outcomes. The use of appropriate quality control measures is important in ensuring the appropriate daily performance of the molecular assay used in the laboratory independent of the technology.
Qnostics’ Blood Borne Virus Molecular Controls comprises a range of pathogens which are classically detected directly from the blood including those related to hepatitis. The table below lists the Qnostics products related to hepatitis testing. For more information visit our website: Qnostics | Molecular Infectious Disease Controls – Randox Laboratories
QCMD
QCMD is a world-leading External Quality Assessment (EQA) / Proficiency Testing (PT) scheme, dedicated to improving the quality of molecular diagnostic assays used in the detection of infectious diseases. With an extensive database of over 2000 participants in over 100 countries, QCMD is one of the largest providers of molecular EQA in the field of molecular diagnostics. QCMD programmes related to hepatitis testing are listed below:
- HBV Drug resistance Typing EQA programme.
- HCV Drug resistance Typing EQA programme.
- Hepatitis B Virus DNA EQA Programme
- Hepatitis B Virus Dried Blood Spot EQA Pilot Study
- Hepatitis B virus Genotype EQA Programme
- Hepatitis C Virus Dried Blood Spot EQA Pilot Study
- Hepatitis C Virus RNA EQA Programme
- Hepatitis C virus Genotype EQA Programme
- Hepatitis D Virus EQA Programme
- Hepatitis E virus RNA EQA Programme
For more information on any of these EQA programmes please visit: QCMD – Molecular EQA Scheme | Randox Quality Control
Conclusion
World Hepatitis Day serves as a reminder of the global impact of hepatitis and the urgent need to raise awareness, prevent transmission, and improve the diagnosis and management of this disease. By understanding the mechanisms, bacterial species involved, diagnostic techniques, and treatment approaches, we can work towards a future free from the burden of hepatitis. Let us unite in our efforts to combat this disease and strive for a healthier world.
If you’d like to find out more about hepatitis or the diagnosis and testing of hepatitis, please visit our website. If you’d like more information on how Randox can improve hepatitis testing in your laboratory, please reach out to marketing@randox.com.
References
- World Health Organization. World Health Statistics 2023. World Health Organization; 2023. https://www.who.int/publications/i/item/9789240074323
- World Health Organization. Hepatitis. https://www.who.int/news-room/fact-sheets/detail/hepatitis-a. Published 2017. Accessed June 9, 2023.
- Wan Z, Wang X. Bacterial Hepatitis. In: Encyclopedia of Medical Microbiology. Elsevier; 2020:110-117.
- Russo TA, McFadden DC. Bacterial and fungal infections in patients with cirrhosis. Clin Liver Dis. 2019;14(2):71-74.
- World Health Organization. Hepatitis E. https://www.who.int/news-room/fact-sheets/detail/hepatitis-e. Published 2018. Accessed June 9, 2023.
- Rakesh S, Pekamwar SS. Hepatitis A. In: StatPearls [Internet]. StatPearls Publishing; 2020.
- World Health Organization. Hepatitis B. https://www.who.int/news-room/fact-sheets/detail/hepatitis-b. Published 2021. Accessed June 9, 2023.
- World Health Organization. Hepatitis D. https://www.who.int/news-room/fact-sheets/detail/hepatitis-d. Published 2021. Accessed June 9, 2023.
- Alfaresi MS, Elkoush AA, Khan AS. Serological diagnosis of viral hepatitis. J Clin Transl Hepatol. 2017;5(4):343-359.
- European Association for the Study of the Liver. EASL Recommendations on Treatment of Hepatitis C. J Hepatol. 2017;66(1):153-194.
- European Association for the Study of the Liver. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J Hepatol. 2017;67(2):370-398.
- Vermehren J, Sarrazin C. New HCV therapies on the horizon. Clin Microbiol Infect. 2011;17(2):122-134.
- World Health Organization. Hepatitis A. https://www.who.int/news-room/fact-sheets/detail/hepatitis-a. Published 2020. Accessed June 9, 2023.
- Kim WR, Terrault NA. Hepatocellular carcinoma and liver transplantation. Clin Liver Dis. 2018;22(2):381-394.
Prostate-specific Antigen & Prostate Cancer
Prostate cancer is the most common form of cancer in men. In the UK, 1 in every 8 men will be diagnosed with the condition within their lifetime, resulting in around 12’000 deaths per year1. Prostate-specific antigen is a major protease found in semen which functions to cleave semeogelins into smaller polypeptides resulting in the liquefication of semen2.
This week, we had the pleasure of welcoming Dr Floris Helmich, who discussed laboratory imprecision relating to Prostate-specific antigen (PSA) and prostate cancer in our latest webinar. Dr Helmich took the time out of his busy schedule to present his experience in PSA quantification and the importance of quality control in yielding accurate and precise results as well as discussing some of the experimental techniques he has found useful in identifying the source of bias laboratory testing. Dr Helmich also discussed the ambiguity relating to reporting ranges and how bias can affect the results of laboratory PSA testing.
What is PSA?
PSA is an enzyme produced by the prostate ductal and acinar epithelium where it is secreted into the lumen before it is used to liquefy semen. Once PSA enters circulation, most are bound to protease inhibitors, however, some remain inactive and circulate in the lumen as free PSA2.
PSA levels in men vary depending on their age. Typically, men between the ages of 50 and 69 should have a PSA level below 3ng/ml. If the PSA concentration exceeds 3ng/ml, it could be a potential indicator of prostate cancer3. However, the challenge with using PSA as the sole monitoring method for prostate cancer is the relatively high false positive rate associated with it. A higher PSA concentration can also be attributed to conditions such as an enlarged prostate, prostatitis, or a urinary tract infection4.
Research indicates that 1 out of 4 men with elevated PSA levels will actually have prostate cancer. Additionally, it has been observed that approximately one in every seven men diagnosed with prostate cancer will maintain normal PSA levels3. These findings highlight the limitations of relying solely on PSA screening for prostate cancer diagnosis. As a result, some countries have started to limit their recommendations regarding PSA-based prostate cancer diagnosis.
In response to these limitations, other countries have chosen to maintain their recommendations for PSA testing but are augmenting the guidelines by incorporating additional criteria to ensure more accurate diagnoses.
Elevated PSA
Elevated levels of PSA should not always be automatically interpreted as a sign of prostate cancer. In older men, one common cause of elevated PSA is benign prostatic hyperplasia (enlarged prostate). Additionally, prostatitis, which refers to inflammation of the prostate, can contribute to an increase in PSA concentration3. It’s important to consider other potential factors that can lead to elevated PSA levels, such as urinary tract infections, recent sexual activity, natural age-related increases, or injury to the groin area5.
Therefore, when assessing PSA levels, it is crucial to recognize that various non-cancerous conditions can also result in elevated PSA. It is recommended to consult healthcare professionals who can evaluate the individual’s medical history, perform further diagnostic tests, and consider other clinical factors to accurately determine the underlying cause of elevated PSA and make informed decisions about the next steps in diagnosis and treatment.
Ultra-low PSA concentrations
The diagnostic accuracy of PSA concentration for prostate cancer is known to be limited. However, there is a clear association between PSA levels and prostate cancer, which confirms it as a valuable tool for risk stratification and diagnosis when used in conjunction with other established factors.
PSA testing also plays a crucial role in monitoring patients who have undergone treatment for prostate cancer. In cases where the patient is deemed cancer-free, their PSA levels should decrease to within the normal range. Following radical prostatectomy (removal of the entire prostate), PSA levels should ideally be undetectable. Post-radiotherapy, it is expected that PSA levels will reach their lowest point (nadir) within 12-18 months. However, it’s important to note that in some cases, a temporary spike in PSA concentration has been observed after radiotherapy. This spike should not be immediately interpreted as recurrent cancer, but these patients should be closely monitored.
If PSA concentrations rise above 2.0ng/ml after radiotherapy, further testing is recommended to assess the possibility of recurrent cancer. Close monitoring and additional evaluations will help healthcare professionals make accurate and timely decisions regarding the patient’s ongoing treatment and care6
Guidelines
Different countries offer varying guidance in relation to Ultra-low PSA testing. The table below details some of these recommended guidelines:
Guidelines | Description |
American Urology Association 7 | PSA concentrations of >0.2ng/ml, followed by a subsequent confirmatory >0.2ng/ml result should be considered biochemical recurrence. However, a cut-off of 0.4ng/ml may better predict metastatic relapse. |
European Association of Urology8 | A detectable PSA indicating relapse should be differentiated from a clinically meaningful relapse. PSA thresholds that predict further metastasises are:
Post-RP = >0.4ng/ml Post-RT = nadir + 2ng/ml |
Prostate Cancer Foundation1 | Post-RP = PSA 0.2ng/ml is indicative of biochemical recurrence
Post-RT = PSA nadir + 2ng/ml is indicative of biochemical recurrence |
Randox Ultra-low PSA Control
We are excited to introduce Randox’s latest innovation, the Ultra-low PSA Control, designed to assist in the precise quantification and monitoring of ultra-low levels of PSA in post-therapy prostate cancer patients. This control has been specifically optimized for use on Roche systems, ensuring exceptional performance and compatibility. Moreover, it is versatile enough to be utilized on various other platforms, making it the sole control available on the market for measuring ultra-low levels of PSA across a range of instruments.
With the Acusera Ultra-low PSA Control, healthcare professionals can achieve accurate and reliable results, enabling them to monitor the progress and treatment response of prostate cancer patients with heightened sensitivity. With a clinically relevant concentration of approximately 0.055ng/ml, this advancement in control technology contributes to enhanced patient care and supports medical professionals in making informed decisions regarding treatment adjustments or further interventions.
Randox’s commitment to innovation and precision in diagnostic solutions continues with the Ultra-low PSA Control, empowering laboratories to deliver high-quality and dependable PSA measurements, even at the ultra-low levels required for post-therapy monitoring.
Take a look at our webinar, Laboratory Imprecision in Relation to PSA and Prostate Cancer Follow-up, with Dr Floris Helmich to learn about how his clinical laboratory deals with bias at quality control relating to Ultra-low PSA quantification
If you’d like to learn more about PSA testing and prostate cancer, we encourage you to read our new educational guide, Ultra-low PSA and Prostate Cancer
If you would like an additional information on our Ultra-low PSA Control, or anything else relating to Quality Control, don’t hesitate to reach out the marketing@randox.com. Additionally, feel free to visit our QC resource hub where you will find all of our brochures, support tools and a collection of educational material, to aid you in maintaining the highest possible levels of quality.
References
- Prostate Cancer Foundation. About prostate cancer. Prostate Cancer UK. Published 2023. https://prostatecanceruk.org/prostate-information-and-support/risk-and-symptoms/about-prostate-cancer
- Balk SP, Ko YJ, Bubley GJ. Biology of Prostate-Specific Antigen. Journal of Clinical Oncology. 2003;21(2):383-391. doi:https://doi.org/10.1200/jco.2003.02.083
- NHS Choices. Should I have a PSA test? – Prostate cancer. NHS. Published 2019. https://www.nhs.uk/conditions/prostate-cancer/should-i-have-psa-test/
- Isono T, Tanaka T, Kageyama S, Yoshiki T. Structural Diversity of Cancer-related and Non-Cancer-related Prostate-specific Antigen. Clinical Chemistry. 2002;48(12):2187-2194. doi:https://doi.org/10.1093/clinchem/48.12.2187
- Mejak SL, Bayliss J, Hanks SD. Long Distance Bicycle Riding Causes Prostate-Specific Antigen to Increase in Men Aged 50 Years and Over. Steyerberg EW, ed. PLoS ONE. 2013;8(2):e56030. doi:https://doi.org/10.1371/journal.pone.0056030
- Santis D, Gillessen S, Grummet J, et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer.; 2023.
- AUA. Advanced Prostate Cancer: AUA/ASTRO/SUO Guideline (2020) – American Urological Association. www.auanet.org. Published 2023. https://www.auanet.org/guidelines-and-quality/guidelines/advanced-prostate-cancer
- Sindhwani P, Wilson CM. Prostatitis and serum prostate-specific antigen. Current Urology Reports. 2005;6(4):307-312. doi:https://doi.org/10.1007/s11934-005-0029-y
Acusera 24·7 Software Updates v3.3
Randox Quality Control is thrilled to announce the release of our latest software update for Acusera 24·7, which includes a collection of new features to enhance your user experience and create a more effective quality management system for your laboratory. This update shall take place on Tuesday 20th June 2023. Below, you’ll find details of the latest software updates and how these changes can help you improve your daily QC activities.
Events
- Users can now add an event at the assay, instrument or QC levels to allow more accurate monitoring of control events. In addition, this feature adds the capability to record reagent lot changes.
- Users now have the ability to temporarily hide all events from the interactive charts, allowing for a clearer view of QC performance over a selected timeframe.
Uncertainty of Measurement
- User can now add the uncertainty of the calibrator value to the uncertainty of measurement report to provide a more accurate assessment of uncertainty.
- Users now have the ability to hide the intraprecision data from the uncertainty of measurement report if no data has been entered for this field.
Charts
- A selection of new interactive charts have been added to this software. These charts focus on the individual results per analyte that each instrument generates over a specified time period.
Individual results
This graph displays a spread of the individual results for a single machine, per analyte generated over a specified time.
Weekly Count
This Bar Chart shows the weekly count of quality control results for a specific instrument, assay and lot.
Instrument Comparison
Users can now view a line graph, which plots the weekly mean of results from multiple instruments using the same assay and QC lot, allowing a comprehensive overview of your QC data.
If you’d like to learn more about these updates, we encourage you to watch our new Acusera 24·7 video guides: Acusera 24.7 Video Guides
This software update will be live from Tuesday 20th June 2023. To make the upgrade process as smooth as possible, we encourage Acusera 24·7 users to clear their browser cache, visit the Acusera 24·7 site, and you will be ready to avail of these new features!
If you would like an additional information on these updates, or anything else relating to Acusera 24·7, don’t hesitate to reach out the marketing@randox.com. Additionally, feel free to visit our QC resource hub where you will find all of our brochures, support tools and a collection of educational material, to aid you in maintaining the highest possible levels of quality.
Enhancing Laboratory Quality Control with Multi-Rule QC: A Comprehensive Guide
Introduction
We are thrilled to announce the release of our latest educational guide, “Understanding Multi-rule QC,” which delves into the world of laboratory quality control. Designed for laboratory professionals, this comprehensive guide aims to empower you with knowledge and strategies to ensure accurate results and uphold patient safety.
Understanding the Significance of Multi-Rule QC
Laboratory quality control is paramount in maintaining the integrity of test results. The guide begins by exploring the various causes of deviations in laboratory testing processes. From instrument malfunctions to environmental factors, we shed light on potential sources of error that can impact result accuracy.
Next, we dive into the core of the guide: Multi-rule QC. This powerful framework encompasses a series of rules that serve as a robust screening tool for identifying outliers, shifts, and trends in data. Through an in-depth exploration of rules such as 1:2s, 1:3s, 2:2s, R4s, 3:1s, 4:1s, 10x, and 7T, we unveil their underlying principles and their significance in maintaining quality control within laboratory settings.
Applying the Multi-Rule QC Approach
The guide equips laboratory professionals with practical insights on applying the Multi-rule QC approach. By examining consecutive data points, analysing trends, and detecting systematic shifts, you gain the ability to proactively address issues before they compromise result accuracy. We highlight the importance of avoiding overreliance on individual rules for result rejection, emphasizing the need to consider additional factors such as clinical relevance and method performance.
Troubleshooting Out-of-Control Events
No laboratory is immune to out-of-control events. That’s why our guide goes beyond rule implementation and delves into effective troubleshooting strategies. We provide guidance on identifying root causes, implementing corrective actions, and re-establishing control in your laboratory environment. By embracing a culture of continuous improvement, you can minimize the impact of deviations and optimize laboratory performance.
Acusera 24.7
Acusera 24.7 is a cloud-based inter-laboratory data management and peer-group reporting software designed to assist in the management of daily QC activities and aid continuous improvement in the laboratory. It includes multi-rule capabilities that can be utilized to monitor your QC data and index it as accepted, rejected, or trigger an alert, depending on the pre-defined multi-rules against which you want to check your data. These features enable the identification of nonconformities and reduce the need for laborious manual statistical analysis while enhancing the accuracy and precision of the laboratory.
Conclusion
In an era where accuracy and patient safety are paramount, the “Multi-rule QC” guide serves as an invaluable resource for laboratory professionals. By mastering the principles and applications of Multi-rule QC, you can enhance the quality control processes within your laboratory, mitigating risks and delivering reliable test results.
To explore the full potential of Multi-rule QC and embark on a journey of laboratory excellence, we invite you to download the guide today. Stay ahead of the curve and ensure the highest standards of quality and patient care in your laboratory!
You can download the Understanding Multi-rule QC Educational Guide below:
If you’d like to find out more about what we can do to help your laboratory or view our range of Internal Quality Controls, don’t hesitate to contact us at marketing@randox.com or feel free to browse the range on our website https://www.randox.com/laboratory-quality-control-acusera/.
Pre-Eclampsia Control
The Pre-eclampsia Control is intended for use with in vitro diagnostic assays for the quantitative determination of placental growth factor (PlGF) and soluble fms‑like tyrosine kinase‑1 (sFlt-1) in human serum and plasma.
The Pre-eclampsia Control is assayed with target values and is suitable for use on various immunoassay analysers. The Pre-eclampsia Control is for use by trained laboratory professionals and can be used in determining the precision of testing systems and in identifying sources of variation.
Features & Benefits
- – Liquid frozen for user convenience
- – Human based serum ensuring a commutable sample matrix
- – 30 days open vial stability when stored at 2ºC to 8ºC keeping waste and costs to a minimum
- – True third party control providing an unbiased assessment of performance
- – Assayed target values provided
Description | Size | Analytes | Cat No | Contact Us |
---|---|---|---|---|
Pre-eclampsia Control Level 1 | 3 x 2 x 2 ml | 2 | PE10527 | |
Pre-eclampsia Control Level 2 | 3 x 2 x 2 ml | 2 | PE10528 | |
Pre-eclampsia Control Level 3 | 3 x 2 x 2 ml | 2 | PE10529 | |
Analytes
- – sFlt-1
- – PIGF
Active Vitamin B12 Quality Control
The Randox Acusera Active Vitamin B12 (Holotranscobalamin/HoloTC) Control is designed to deliver a cost-effective, high quality solution for use in the quantitative determination of Active Vitamin B12 in human serum and plasma.
The human material based Active B12 Controls are assayed with target values provided and are suitable for use on various analysers.
Features & Benefits
- Liquid frozen for user convenience
- Human based serum ensuring a commutable sample matrix
- True Third Party control providing unbiased assessment of performance
- An impressive open vial stability of 30 days at 2° to 8°C helping to keep waste to a minimum
Description | Size | Analytes | Cat No | |
---|---|---|---|---|
Active Vitamin B12 Control Level 1 | 3 x 2 ml | 1 | VB10524 | |
Active Vitamin B12 Control Level 2 | 3 x 2 ml | 1 | VB10525 | |
Analytes
- Active Vitamin B12 (Holotranscobalamin/HoloTC)
Internal Quality Control and ISO 15189
As a major contributor to the IVD industry, like many of you, the trials and tribulations of quality control are an everyday consideration. It is for this reason we strive to make the process of IQC as straightforward as possible. We recognise how busy life in the laboratory can get and believe it is our duty to simplify your QC process as much as possible.
The Acusera range has been designed with this in mind. Our true third-party control range boasts unrivalled levels of consolidation, supplied at clinically relevant concentrations in a suitable, commutable matrix. When used in combination with Acusera 24.7, our interlaboratory management software, the Acusera range will help to reduce analytical errors and maximise precision in your laboratory.
With the recent updates to ISO 15189:2022, we understand that there will be added pressure on many laboratories who are trying to maintain their accreditation. To assist you with your gap analysis and transition to these updated standards, we have produced this accreditation guide, detailing all of the key points relating to this new version of the highly sought after accreditation.
If you’d like to find out more about what we can do to help your laboratory or view our range of Internal Quality Controls, don’t hesitate to contact us at marketing@randox.com or feel free to browse the range on our website https://www.randox.com/laboratory-quality-control-acusera/.
Bone Markers (Serum) Control
The Lyophilised Serum Bone Marker Control is intended for use with in vitro diagnostic assays for the quantitative determination of Procollagen Type 1 N-Terminal Propeptide (P1NP), N-MID Osteocalcin (OC) and Bone Alkaline Phosphatase (B-ALP) in serum samples.
This Lyophilised Serum Bone Marker Control is assayed with target values and is suitable for use on automated analysers.
Features & Benefits
- – Lyophilised for enhanced stability
- – True third party control providing an unbiased assessment of performance
- – Three clinically relevant levels available
- – Human based serum providing a matrix similar to the patient sample
- – 1 year shelf life from date of manufacture allowing for long term QC monitoring and a decrease in new lot validation studies
- – 14- day reconstituted open vial stability applies for PINP and B-ALP helping to keep waste to a minimum, 1-day reconstituted stability for N-MID Osteocalcin
Description | Size | Analytes | Cat No | Contact Us |
---|---|---|---|---|
Bone Makers (Serum) Control Level 1 | 6 x 2ml | 3 | SBM10574 | |
Bone Makers (Serum) Control Level 2 | 6 x 2ml | 3 | SBM10587 | |
Bone Makers (Serum) Control Level 3 | 6 x 2ml | 3 | SBM10588 | |
Analytes
- – PINP
- – N-MID Osteocalcin
- – Bone-ALP
*No claims are made regarding values and stability.
Ultra-Low PSA Quality Control
The Acusera ultra-low PSA control delivers a true third party solution for use in monitoring the performance of in vitro diagnostic assays used in the quantitative determination of low levels of PSA.
This control is suitable for use across a variety of platforms.
Name | Unit | Target | Analyser |
Ultra-Low PSA | ng/ml | 0.055 * | Roche Cobas e801 |
* Example of values for Roche Cobas e801. Other systems may vary dependent on laboratory assignment. Typical values displayed, please see control IFU for lot specific values.
Features & Benefits
- Impressive 30-day stability at +2°C to +8°C minimising waste
- Liquid ready-to-use control ensuring minimal sample preparation
- True third-party control providing an unbiased assessment of performance
- Manufactured using human based material providing a matrix similar to the patient sample
- 1 year shelf life from date of manufacture ensuring continuity of lot supply
- Target values for specific instruments are available
This control is for Research Use Only (RUO)
Description | Size | Analytes | Cat No | |
---|---|---|---|---|
Ultra-Low PSA Control | 6 x 1ml | 1 | TU10523 | |
Analyte
- Total PSA