Bile Acids Reagent
Bile Acids Reagent
Bile Acids Reagents
Features & Benefits of the Randox Bile Acids reagents
Excellent linearity
The Randox Bile Acids method is linear up to a concentration of 150 µmol/l
Exceptional correlation with standard methods
The Randox methodology was compared against other commercially available methods and the Randox Bile Acids assay showed a correlation coefficient of 0.99
Liquid ready-to-use reagent
A two shot ready-to-use liquid format which is more convenient as the reagent does not need to be reconstituted which aids in reducing the risk of errors occurring
Measuring range
Measuring range 1.47 – 150 µmol/l
Analyser protocols
Protocols are available for a range of analysers
Excellent stability
Stable to expiry when stored at +2 to +8°C
Ordering information
Cat No | Size | ||||
---|---|---|---|---|---|
BI2672 | R1 10 x 10ml R2 1 x 30ml | Enquire | Kit Insert Request | MSDS | Buy Online |
BI3863 (5th) | R1 2 x 18ml R2 2 x 8ml | Enquire | Kit Insert Request | MSDS | Buy Online |
BI7982 (5th) | R1 6 x 50ml R2 6 x 18ml | Enquire | Kit Insert Request | MSDS | Buy Online |
Instrument Specific Applications (ISA’s) are available for a wide range of biochemistry analysers. Contact us to enquire about your specific analyser.
What are Bile Acids used for?
Liver Function
Measuring total bile acid (TBA) levels may prove useful for the detection of liver diseases such as viral hepatitis, mild liver injury through drug use and for further evaluation of patients with chronic hepatitis who were previously treated successfully. TBA levels may rise up to 100 times the normal concentration in patients with liver disease due to impairment of hepatic synthesis and extraction of bile acids. Measurement of TBA in serum can be used in the diagnosis and prognosis of liver diseases and may detect some forms of liver disease earlier than standard liver markers due to the correlation of TBA with liver function, rather than liver damage.
Bile Acid Deficiency
TBA deficiency is caused by a genetic error in one of the 17 enzymes that produce bile acids. Deficiency can lead to liver failure and even death in infants, therefore early detection is vital. People with TBA deficiency may exhibit symptoms, including:
• Vitamin deficiencies, specifically of fat-soluble vitamins such as A, D, E, and K
• Jaundice
• Stunted or abnormal growth
• Diarrhoea
• Loss of liver function
• Liver failure
Intrahepatic Cholestasis of Pregnancy
Intrahepatic cholestasis of pregnancy (ICP) or obstetric cholestasis is a pregnancy-specific liver disorder. It can be indicated by pruritus, jaundice, elevated TBA levels and/or serum transaminases and usually affects women during the second and third trimester of pregnancy. ICP is a condition that restricts the flow of bile through the gallbladder resulting in a build-up of TBA in the liver. Due to the build-up, Bile Acids leak into the bloodstream where they are detected at concerning levels. It is an extremely serious complication of pregnancy that can lead to the increased risk of premature birth or even stillbirth as such it is vital that women with the condition are monitored carefully.
According to several reports TBA levels in ICP can reach as high as 100 times the upper limit of a normal pregnancy. It has been reported that a doubling in maternal serum TBA levels, results in a 200% increased risk of stillbirth. Additionally, bile acids can affect the foetal cardiovascular system as it has been found that there are often cardiac rhythm disturbances in the foetus due to the elevated TBA in circulation.
There are several risk factors associated with ICP such as family history, use of oral contraceptives, assisted reproduction techniques and multiple gestation. Genetic influence accounts for approximately 15% of ICP cases. Dietary selenium is a contributing environmental factor as serum selenium levels often decrease throughout pregnancy. Further to this, incidences of ICP rise in the winter months and are most likely due to the fact selenium levels are naturally less during these months. In healthy pregnancies, there is very little increase in TBA levels although a slight increase is likely to be seen in the third trimester.
Measurement of TBA in serum is thought to be the most suitable method of diagnosing and monitoring ICP.
Bile acids are water-soluble and amphipathic end products of cholesterol metabolism formed in the liver. Bile is stored in the gall bladder and released into the intestine when food is consumed. The fundamental role of bile acids is to aid in the digestion and absorption of fats and fat-soluble vitamins in the small intestine. In doing so, bile acids have five physiological functions within the body as shown below:

Determining the cause and extent of liver damage is important in guiding treatment decisions and preventing disease progression. Standard liver function tests include; ALT, AST, ALP, GGT and Bilirubin. The measurement of TBA is most beneficial in conjunction with these standard liver tests and offers unrivalled sensitivity allowing identification of early stage liver dysfunction.
There are several commercial methods available for the detection and measurement of TBA in serum. Traditional TBA tests based on the enzymatic method use nitrotetrazolium blue (NBT) to form a formazan dye. The reaction is measured at 546nm and the intensity of the colour is proportional to the concentration of bile acids.
Newer methods such as the enzyme cycling method or fifth generation methods offer many advantages including greater sensitivity, liquid reagents, small sample volumes and reduced instrument contamination from formazan dye. Additionally, the fifth generation assay does not suffer from interference from lipaemic or haemolytic samples. Both lipaemia and haemolysis are common in new-borns and pregnant women.
Enzyme cycling methods offer superior analytical performance, two reactions are combined. In the first reaction, bile acids are oxidised by 3-α hydroxysteroid dehydrogenase with the subsequent reduction of Thio-NAD to Thio-NADH. In the second reaction, the oxidised bile acids are reduced by the same enzyme with the subsequent oxidation of NADH to NAD. The rate of formation of Thio-NADH is determined by measuring the specific absorbance change at 405nm. Enzyme cycling means multiple Thio-NAD molecules are generated from each bile acid molecule giving rise to a much larger absorbance change and signal amplification, increasing the sensitivity of the assay.
The assay principle is demonstrated in the diagram below:

The Randox fifth generation assay utilises the advanced enzyme cycling method which displays outstanding sensitivity and precision compared to traditional enzymatic based tests. The assay shows excellent linearity of up to 188 µmol/l with the normal upper range of TBA in a fasting serum sample being at 10 µmol/l. The liquid ready-to-use reagent is available along with complementary controls and calibrators for a complete testing package.
Archives
- May 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- July 2014
- June 2014