Copper Assay

Home - Third Party Assay

Copper Assay

Reagent | Copper

A Unique Test for the Determination of Copper

Benefits of the Randox Copper Assay

Exceptional correlation

A correlation coefficient of r=0.97 was displayed when the Randox copper assay was compared to commercially available methods.

Excellent precision

The Randox copper assay displayed a precision of <2.15% CV.

Wide measuring range

The Randox copper assay has a measuring range of 6.6 – 86µmol/l for the comfortable detection of clinically important results.

Standard supplied with the kit

The Randox copper kit includes the standard simplifying the ordering process. Calibrator is available for automated use.

Controls available

Controls available offering a complete testing package.

Applications available

Applications available detailing instrument-specific settings for the convenient use of the Randox copper assay on a variety of clinical chemistry analysers.

Ordering information

Cat NoSize
CU2340R1a 1 x 105ml
R1b 5 x 20ml
R2 1 x 30ml
EnquireKit Insert RequestMSDSBuy Online

Instrument Specific Applications (ISA’s) are available for a wide range of biochemistry analysers.  Contact us to enquire about your specific analyser.


Copper (CU) is an essential trace mineral, naturally available in some foods and as dietary supplements. CU is a cofactor for several enzymes, known as cuproenzymes, which are involved in connective tissue synthesis, energy production, iron metabolism, neuropeptide activation and neurotransmitter synthesis. CU is also involved in brain development, immune system functioning, neurohormone homeostasis, pigmentation, regulation of gene expression, and several physiological processes, such as angiogenesis 1.

CU has been recognised as both an antioxidant and pro-oxidant. Naturally occurring within the body, free radicals interact with genetic material, damage cell walls and contribute to the development of several health problems. As an antioxidant, CU scavenges to neutralise the free radicals, aiding in the prevention of oxidative damage. Conversely, as a pro-oxidant, CU can promote free radical damage, inducing the development of health problems such as Alzheimer’s disease. Consequently, CU is vital as part of a balanced diet 2.

CU deficiency in Western countries is rare, however, altered CU metabolism may influence CU deficiency which negatively impacts the connective tissue, nervous, immune and cardiovascular systems. Such conditions that can predispose CU deficiency include: prematurity, gastric bypass, burns, over-the-counter vitamins containing zinc and iron and infants fed with unmodified cow milk 3.

Menkes disease is a rare x-linked recessive disorder of CU metabolism caused by mutations to the ATP7A gene. Menkes disease affects an estimated 1 in every 100,000 – 250,000 births and is characterised by sparse, kinky hair and failure to thrive and progressive deterioration of the nervous system. Symptoms commonly present during infancy, but, in some cases, the symptoms may present in early to middle childhood. If treatment is started early, the prognosis may improve 4.

Copper toxicity is also rare but can be caused by consuming too many dietary supplements high in copper, drinking contaminated water and from fungicides containing CU sulphates 3.

Wilson’s disease is an autosomal recessive disorder caused by mutations to the ATP7B gene, which is highly expressed in the liver, kidneys and placenta. Wilson’s disease affects approximately 1 in every 40,000 and is characterised by hepatic, neuropsychiatric and ophthalmic symptoms as a result of excess copper accumulation. Unlike most genetic diseases, early detection and implementation of a treatment plan for those with Wilson’s disease can prevent longer term morbidity due to copper induced end organ dysfunction 3.

Related products

Clinical Chemistry Calibrator

Chemistry Premium Controls

Clinical Chemistry EQA

RX daytona/imola /daytona plus/monaco

Randox Acetaminophen Reagent

We develop a range of applications for the RX daytona/ imola/ daytona plus/ monaco analysers so that laboratories worldwide can enjoy the benefits of freedom of choice from an independent manufacturer, Randox Laboratories. We have a range of assays available for the RX daytona/ imola/ daytona plus/ monaco, and we are always developing more applications. If you don’t see the application you are looking for, please contact us to request an application.

All kits are produced to international standard and have ISO 13485 accreditation.

Existing customers can access IFU’s through Powerline.

Rx daytona/imola /daytona plus/monaco - Reagents
Complement Component 3 CRP Full Range (0.3-160mg/l)IgECRP
Complement Component 4 CRP High Sensitivity IgG
IgAIgMRheumatoid Factor
Calcium Creatinine EnzymaticPotassiumCO2 Total
Creatinine (Jaffe)SodiumChlorideGlucose
Alkaline PhosphataseCalciumPhosphorusTotal Protein
CholesterolCRP Full Range (0.3-160mg/l)Direct LDL CholesterolMyoglobin
CK-MBCRP High Sensitivity Heart-Type Fatty Acid Binding Protein (H-FABP) sLDL
CRP Direct HDL CholesterolLipoprotein (a)
Albumin Direct BilirubinCreatinine (Jaffe)Sodium
Alkaline PhosphataseCalcium GlucoseTotal Bilirubin
ALTChlorideLactateTotal Protein
AST (GOT) CO2 Total Potassium Urea
CholesterolDirect HDL CholesterolGlycerol Ranbut (Hydroxybutyrate)
Creatinine EnzymaticDirect LDL Cholesterol HbA1c/Hb Total Protein
Creatinine (Jaffe)FructosamineMicroalbumin Triglycerides
Cystatin CGlucoseNEFA (Non-Esterified Fatty Acids)Urinary Protein
Calcium CO2 Total Magnesium Sodium (Direct / Nondirect)
Chloride (Direct / Nondirect)LithiumPotassium (Direct / Nondirect)
AlbuminCholinesteraseHaptoglobin Total Bilirubin
AldolaseComplement C3 IgA Total Protein
Alkaline PhosphataseComplement C4IgG Transferrin
Alpha-1 AntitrypsinDirect Bilirubin IgMTransthyretin (Prealbumin)
ALTGamma GTIron (UIBC)Ammonia
GLDHLeucine Arylamidase (LAP)AST (GOT) Glycerol
Acid PhosphataseASOLactateAlpha-1Acid Glycoprotein
CRPRheumatoid Factor
Apolipoprotein A-IApolipoprotein C-IICholesterolLipoprotein (a)
Apolipoprotein A-II Apolipoprotein C-IIIDirect HDL CholesterolsLDL
Apolipoprotein BApolipoprotein EDirect LDL CholesterolTriglycerides
Alpha-1 AntitrypsinCRP Full Range (0.3-160mg/l) IgECRP
CRP High SensitivityTransthyretin (Prealbumin)
Copper Iron (UIBC)PotassiumTransthyretin (Prealbumin)
AmylaseLDHPancreatic AmylaseGlucose
Albumin Creatinine EnzymaticIgGSodium
AmmoniaCreatinine (Jaffe)LDHPhosphorus (Inorganic)
Beta-2 MicroglobulinCystatin CMagnesium Urinary Protein
CalciumGlucose Microalbumin Urea
Chloride HbA1c/HbPotassiumUric Acid
Albumin Cholinesterase (Butyryl)HDLSuperoxide Dismutase (Ransod)
Alkaline phosphataseCK-NAC Iron (UIBC) Sodium
ALT (GPT) CO2 Total Lactate Therapeutic drugs
AldolaseCopper Lactate dehydrogenase Total Protein
Ammonia CreatinineLDLTriglycerides
AST (GOT) Canine CRP Magnesium Uric Acid
Bile acidsFructosamine NEFA (Non-esterified fatty acids)Urinary protein
BilirubinGamma-GT Phosphorus (Inorganic) Zinc
CalciumGLDH PotassiumChloride
GlucoseRanbut (Hydroxybutyrate)CholesterolGlycerol
Glutathione Peroxidase (Ransel)
Therapeutic Drugs
AcetaminophenGentamicinPhenytoinValproic Acid
Drugs of Abuse
BarbituratesCocaine metaboliteEthanolOpiates
Alpha-1 AntitrypsinASOCystatin CIgM
Alpha-1 Acid GlycoproteinBeta-2 MicroglobulinFerritinLipoprotein (a)
Apolipoprotein A-I CeruloplasminFructosamineMicroalbumin
Apolipoprotein A-II Complement C3 HaptoglobinMyoglobin
Apolipoprotein B Complement C4HbA1c/Hb Rheumatoid Factor
Apolipoprotein C-II CRP IgA Transthyretin (Prealbumin)
Apolipoprotein C-IIICRP Full Range (0.3-160mg/l)IgETransferrin
Apolipoprotein ECRP High Sensitivity IgG
AlbuminGlutathione Reductase TIBCUric Acid
BilirubinGlutathione Peroxidase (Ransel)Total Antioxidant StatusFerritin
Superoxide Dismutase (Ransod)Transferrin
Food and Wine Testing
Acetic AcidCopperGlycerolMalic Acid
Ammonia Glucose Iron Potassium
CalciumGlucose/FructoseL-Lactic AcidTotal Antioxidant Status



Reagents | Syphilis

Key Benefits

Quantative and qualitative results available

For choice and convenience

Excellent stability

Stable to expiry when stored at 2-8°C

Randox Syphilis

  • Treponema Pallidum Haemagglutination Assay (TPHA) method
  • Liquid ready-to-use reagents
  • Stable to expiry when stored at 2-8°C
  • Qualitative or quantitative results
Cat NoSize
SY1480100T (L)EnquireKit Insert RequestMSDSBuy Online
SY1478100T (Card test) (L)Buy Online
(L) Indicates liquid option

Instrument Specific Applications (ISA’s) are available for a wide range of biochemistry analysers.  Contact us to enquire about your specific analyser.

What is the Syphilis assay used for?

Syphilis is a chronic, contagious and often congenital venereal disease caused by Treponema pallidum. Infection results from contact with moist surfaces, originating in lesions of the epithelial tissue of the skin and mucous membranes. If untreated the disease may result in irreversible changes in the cardiovascular and nervous system. Syphilis remains a disease of high incidence, despite advances in modern antibiotic therapy.

Clinical Chemistry Panel

For more information or to view more reagents within the clinical chemistry panel, please click here

Rapid Tests / Serology Panel

For more information or to view more reagents within the rapid tests / serology panel, please click here

Roche Cobas

Randox Acetaminophen Reagent

Applications for Roche Cobas 4000 / 6000 / 8000 / PURE / PRO

We develop a range of applications for the Roche Cobas Series (4000 / 6000 / 8000 / PURE / PRO) analysers so that laboratories worldwide can enjoy the benefits of freedom of choice from an independent manufacturer, Randox Laboratories.

Applications available for Roche Cobas

We have 72 reagents available for the Roche Cobas Series (4000 / 6000 / 8000 / PURE / PRO), and are always developing more. If you don’t see the application you are looking for, please email us to request an application. All kits are produced to international standard and have ISO 13485 accreditation.

Email Us

Get in touch with Randox via email at

Need Instructions?

Download your kit insert for free on our online portal

Buy Online

Order your reagents kits online by visiting our online store 

Beckman Coulter AU

Randox Acetaminophen Reagent

Applications for Beckman Coulter AU Series

We develop a range of applications for the Beckman Coulter AU Series (400 / 480 / 600 / 640 / 680 / 2700 / 5400 / 5800 / DxC700AU) analysers so that laboratories worldwide can enjoy the benefits of freedom of choice from an independent manufacturer, Randox Laboratories.

Beckman Coulter AU Series Applications

We have 87 reagents available for the Beckman Coulter AU (400 / 480 / 600 / 640 / 680 / 2700 / 5400 / 5800 / DxC700AU) analysers, and are always developing more. If you don’t see the application you are looking for, please contact us to request an application. All kits are produced to international standard and have ISO 13485 accreditation.

Need Instructions?

Download kit inserts for free on our online portal

Email Us

Get in touch with Randox via email at

Buy Online

Order reagents kits online by visiting our online store 

Cardiology Reagents Panel

Randox Cardiology Reagents Panel

Randox is a leading provider of diagnostic reagents for the assessment of cardiovascular disease risk. Our extensive menu of cardiac biomarkers within the cardiology reagents panel include: routine lipid tests such as Homocysteine, hsCRP, Apo A-I, Apo A-II, Apo B and Lp(a), as well as, unique assays for cardiac risk assessment including sdLDL Cholesterol, Apo C-II, Apo C-III and Apo E. Check out our benefits below.

Download our Cardiology & Lipids Brochure


  • Unique reagents enable impeccable patient care with an expanded profile for cardiac risk assessment
  • Wide measuring ranges for accurate detection of abnormal levels
  • Liquid ready-to-use reagents for convenience, and we also offer lyophilised reagents
  • Applications available for a wide range of clinical chemistry analysers
  • Strong correlation to reference methods for trusted results

Randox Cardiology Reagents

Risk Assessment

  • CK-MB useful in patients with chest pain; Creatine Kinase is an enzyme produced in many different types of cells, of which high levels indicate muscle trauma or damage.
  • Routine lipid tests to determine the patient’s cholesterol and triglyceride levels – HDL Cholesterol, LDL Cholesterol, Total Cholesterol and Triglycerides
  • Independent risk assessment tests such as sdLDL Cholesterol and Lipoprotein(a) to determine any genetic factors which may increase their risk of CVD. Please note, this is necessary even for patients who have good cholesterol levels
  • Secondary tests, such as High Sensitivity CRP, in addition to risk assessment markers and lipid evaluation – secondary tests are important in predicting future cardiac events of individuals with no previous history of CVD and those deemed healthy as a result of primary tests; approximately half of all heart attacks occur in patients classified as low risk. In addition, they can also be used to evaluate the risk of a recurrent cardiac event
  • Speciality tests include
    • Homocysteine – elevated levels of homocysteine have been linked to various disease states including CVD. Extremely high levels are found in patients with homocystinuria, of which many suffer from early arteriosclerosis.
Download our Cardiology & Lipids Brochure

Email Us

Get in touch with your local sales representative via email at

Need Instructions?

Kit Inserts are available to download for free on our online portal

Buy Online

Order your cardiology kits today by visiting our online store 

Beta-2 Microglobulin Reagent

Reagent | Beta 2 Microglobulin

Key Benefits of the Beta-2 Microglobulin reagent

Wide measuring range

The healthy range of beta-2 microglobulin is 0.9 – 3.0 mg/l. The Randox Beta-2 Microglobulin reagent can comfortably detect levels outside of this range with a measuring range of 0.56 – 20.9 mg/l.

Excellent stability

Stable until expiry date when stored at +2 to +8⁰C

Liquid ready-to-use reagents

The Randox Beta-2 Microglobulin reagent comes in a liquid format which is more convenient as the reagent does not need to be reconstituted which aids in reducing the risk of errors occurring

Other features of the Beta-2 Microglobulin reagent

  • Immunoturbidimetric
  • Liquid ready-to-use reagents
  • Stable to expiry when stored at +2 to +8⁰C
  • Measuring range 0.56 – 20.9 mg/l
Cat NoSize
BM3887R1 2 x 11ml (L)
R2 2 x 4.3ml
EnquireKit Insert RequestMSDSBuy Online

Instrument Specific Applications (ISA’s) are available for a wide range of biochemistry analysers.  Contact us to enquire about your specific analyser.

What is the Beta-2 Microglobulin assay used for?

What is beta-2 microglobulin?

Located on the surface of most cells, especially nucleated cells, are large surface proteins called Class I antigens which are made up of a heavy chain and a light chain. The heavy chain is produced by multiple genes and the light chain is chemically bound to it.  This light chain is the beta-2 microglobulin.  Class I antigens are mostly expressed on lymphoid cells and expressed less on the lungs, kidney and liver and are sparsely expressed on skeletal muscle and the brain.  Beta-2 microglobulin is shed by the cells which becomes detectable in the bloodstream under normal conditions.

What is the beta-2 microglobulin assay used for?

Elevated concentration levels of beta-2 microglobulin is attributed to diseases with a high cell turnover.  It is a powerful prognosis factor for multiple myeloma, a type of bone marrow cancer.  It is also used to detect chronic lymphocytic leukemia and some types of lymphomas. For more information on tumor markers, please click here [external link].

Low concentration levels of beta-2 microglobulin in serum and high concentration levels is urine is attributed to renal tubular disease. This is particularly important during the onset on diabetes as the kidneys grow larger and the glomerular filtration rate (GFR) becomes supranormal which are risk factors for the development of diabetic nephropathy in later life. For more information on renal function in diabetic disease model, please click here [external link].

The Randox Beta-2 Microglobulin assay is used as a white blood cell tumor marker as well as a biomarker for renal disease.

Diabetes Panel

For more information or to visit more reagents within the diabetes panel, please click here

Lipid Testing Panel

Lipid Panel Testing Panel | Reagents

Introducing The Randox Lipids Panel

Cardiovascular disease (CVD) caused by atherosclerosis (arteriosclerosis) is the leading cause of morbidity and mortality in Western countries1. Atherosclerosis involves the hardening and narrowing of vessels in the systemic system. This process originates from the build-up of fatty deposits through a process known as atherogenesis. If the build-up increases, plaque rupturing may occur which may lead to myocardial infarction2.

The mission of the National Lipid Association (NLA) “is to enhance the practice of lipid management in clinical medicine”.  NLA advocate advancing the current lipid testing profile. The current lipid panel consists of testing LDL cholesterol, HDL cholesterol and triglycerides, which only detects approximately 20% of all atherosclerotic cardiovascular disease (ASCVD) patients.  Advanced lipid testing is recommended to optimise patient treatment3.

Current Challenges

icons +7

75% of circulatory risk factors are preventable4


icons +14

1 in 4 deaths in the US is attributed to heart disease6


6 million people in the UK suffer from narrowing of the heart arteries5

How Can Randox Help With The Current Challenges

  • Risk Assessment using Randox lipid reagents

As the current lipid panel consists of testing LDL cholesterol, HDL cholesterol and triglycerides, which only detects approximately 20% of all coronary artery disease (CAD) patients, advanced lipid testing is recommended to optimise patient treatment. The Randox lipid profile encompasses niche and superior performance assays for the detection of conventional risk factors, as well as emerging biomarkers associated with further risk.


Apolipoprotein C-III (Apo C-III)
A niche product from Randox, Apo C-III deficiency has shown to increase the rate of triglyceride clearance from plasma by up to 7 fold. Apo C-III levels have been reported higher in several conditions such as type 2 diabetes, hyperbilirubinemia and decreased thyroid function.


Apolipoprotein E (Apo E)
A niche product from Randox, Apo E has been found to have an association with neurodegenerative conditions such as Alzheimer’s Disease and Multiple Sclerosis. A deficiency in Apo E gives rise to high levels of serum cholesterol and triglycerides, leading to premature atherosclerosis


HDL3 Cholesterol (HDL3-C)
A niche product from Randox, HDL3-C, a subclass of HDL-C, has an inverse correlation with CVD risk. Several clinical studies indicate that measuring these HDL-C subclasses better reflects primary and secondary CHD risk than measurement of total HDL-C, making it a significant independent biomarker for better risk profiling when used together with other risk markers.


Lipoprotein (a) (Lp(a))
A unique product from Randox, Lp(a) has proven to have a causal role in the premature development of atherosclerosis and CVD as elevated Lp(a) levels associate robustly and specifically with increased CVD risk. The Randox Lp(a) assay is one of the only methodologies on the market that detects the non-variable part of the Lp(a) molecule and therefore suffers minimal size related bias.


Small-dense LDL Cholesterol (sdLDL-C)
A niche product from Randox, sdLDL-C, a subtype of LDL cholesterol, can more readily permeate the inner arterial wall. Research indicates that individuals with a predominance of sdLDL-C have a 3-fold increased risk of myocardial infarction.

  • Benefits of Randox Lipid Reagents
icons ++

Liquid ready-to-use assays
The Randox lipid assays are available in a liquid ready-to-use format for convenience and ease of use. (The Triglycerides kit is also available in a lyophilised format).

icons ++6

Wide measuring ranges
The Randox lipid assays can comfortably detect levels outside of the healthy range for the accurate detection of abnormal levels, offering peace of mind in patient samples.

icons ++3

Excellent correlation with standard methods
The Randox lipid assays display excellent correlations when compared against standard methods, offering trust and confidence in results.

icons ++4

Applications are available
Applications are available detailing instrument-specific settings for the convenient use of the Randox lipid assays on a wide range of clinical chemistry analysers.

  • Randox Lipid Reagents
  • Circulatory Health Problems
  • Tips to improve circulatory health

Cardiovascular disease (CVD) refers to disease of the heart or blood vessels. Heart disease encompasses a number of diseases that affect the heart. In contrast, vascular disease encompasses a number of diseases that affect the blood vessels. Circulatory health problems are the result of vascular disease. Developing problems within the vascular system can go undetermined and in some patients the problem may only become apparent when they experience a heart attack or stroke 7.


Atherogenesis and Atherosclerosis

Atherogenesis is a circulatory disease whereby atheromas are formed (plaque build-up) within the artery.  Plaque is a combination of cholesterol, fat, calcium, lipids and other substances within the blood stream.  As time progresses, the plaque hardens, narrowing the arteries.  This is known as atherosclerosis. Consequently, blood flow through the narrowed artery is reduced, limiting the supply of blood to vital organs and bodily tissues.  As atherogenesis can affect any artery within the body, different diseases may develop based on the artery that is affected.  Such diseases include: coronary heart/artery disease, carotid artery disease, peripheral artery disease and chronic kidney disease8.


Plaque Rupture

As atherogenesis and atherosclerosis causes plaque to build up and harden within the arteries precipitating thrombi, blood flow to the heart, brain, or the lower extremities is obstructed (depending on the artery affected).  This can further develop into coronary heart/artery disease (heart), ischemic stroke (brain) or peripheral vascular disease (lower extremities).  However, the most common and most discussed of these manifestations is coronary heart/artery disease9.  These manifestations occur when the plaque ruptures.  The risk of the plaque rupturing is determined by the type of plaque (composition) rather than the size of the plaque (volume) as only plaques that are rich in soft extracellular lipids are rupture-prone (vulnerable).  Whilst most plaque ruptures are small causing an acute coronary event, the actual vulnerability of the plaque may change over time.  Luckily, the vulnerable plaque components are most likely to regress with treatment10.

icons +7

Myocardial Infarction

The processes of atherogenesis, atherosclerosis and plaque rupturing, if left undetected can a myocardial infarction (MI) or “heart attack” if the plaque build-up has occurred in the coronary artery11. MI occurs when the blood supply to heart is completely blocked by the formation of a clot or a blockage due to a loose piece of atheroma (plaque rupturing). If the blood supply to the heart is blocked the cells in the heart begin to die due to the lack of oxygen, causing chest pain (angina). The extent of the blockage and the amount of heart muscle affected will determine whether this malfunction will affect the hearts ability to pump blood12. The signs of atherogenesis, atherosclerosis and plaque rupturing can be subtle, and most heart attack victims may only feel symptoms in the days leading up to the attack. For 80% of people, the first sign of a heart attack is angina. Other symptoms to be aware of are shortness of breath, anxiety, sweating, light-headedness and temporary changes in vision 11.

icons +18


Regular exercise has a major effect on your circulation and cardiovascular health. Moderate levels of exercise can increase blood flow and reduce the risk of poor circulatory health conditions such as atherosclerosis. Exercise promotes good circulation as it strengthens the heart muscles, lowing the resting heart rate and preventing the build-up of plaque in the arteries. It is important for those with current circulation problems to be vigilant while exercising to ensure they are not over exerting themselves13.

icons +19

Know your healthy fats

Diet changes are important for improving circulatory health. Eating a variety of foods such as lean meats, vegetables, fruits, legumes and whole grains will aid in lowering lipid levels and keep them low. It is recommended that more unsaturated fats are consumed in comparison to saturated fats, as saturated fats raise sdLDL-C levels which can lead to an increased risk of atherosclerosis. On the other hand, unsaturated fats such as monounsaturated or polyunsaturated fats may increase HDL levels and are known as being ‘heart-healthy’. It is recommended to find healthier alternatives for certain foods such as butter and oil14.

smoking icon

Stop Smoking

Smoking can cause circulatory problems in several ways. Most notably it can cause the carotid arteries (arteries which supply oxygen to the brain) to become filled with plaque. Also, smoking can cause PAD by reducing adequate blood supply to the limbs which can lead to leg pain and possibly amputation. Quitting smoking has been proven to have positive effects on circulation: just 20 minutes after a cigarette, blood pressure decreases and oxygen levels return to normal. Within 24 hours, the chance of a heart attack will have already decreased and after 48 hours, nerve endings deeded by the habit are expected to regenerate, with sense of taste and smell improving also. A year after quitting, the risk of coronary heart disease (CHD) will be halved. After 15 years, a quitter’s risk of CHD is now similar to that of a person who has never smoked14.

Related Products

Cardiology Testing Panel

Featured Reagent Home

Reagents Resource Hub

  • References

    [1] Burnett, John R. Lipids, Lipoproteins, Atherosclerosis and Cardiovascular Disease. National Center for Biotechnology Information (NCBI). [Online] Clin Biochem Rev., 25 February 2004. [Cited: 3 December 2018.]

    [2] Zimmermaann, Kim Ann. Circulatory Systenm: Facts, Function & Diseases. Live Science. [Online] 16 March 2018. [Cited: 3 December 2018.]

    [3] National Lipid Association. National Lipid Association Releases Updated Recommendations on the Use of PCSK9 Inhibitors at the 15th Annual Scientific Session. [Online] no date. [Cited: 3 December 2018.]

    [4] World Heart Federation. Driving Sustainable Action for Circulatory Health: Whitepaper for Circulatory Health. [Online] Global Coarlition for Circulatory Health, no date. [Cited: 30 November 2018.]

    [5] British Heart Foundation. Research into atherosclerosis: 4 scientists talk about their work. [Online] no date. [Cited: 30 November 2018.]

    [6] Centers for Disease Control and Prevention. Heart Disease Facts. [Online] 28 November 2017. [Cited: 4 December 2018.]

    [7] Cardiovascular Disease. NHS. [Online] NHS UK, September 15, 2018. [Cited: November 30, 2018.]

    [8] National Heart, Lunch, and Blood Institute. Atherosclerosis. [Online] no date. [Cited: 28 November 2018.]

    [9] Fog Bentzon, Jacob, et al. Mechanisms of Plaque Formation and Rupture. Circulation Research. [Online] 6 June 2014. [Cited: 29 November 2018.]

    [10] Falk, E. Why do plaques rupture? National Center for Biotechnology Information. [Online] Circulation, December 1992. [Cited: 29 November 2018.]

    [11] MedBroadcast. Heart Attack (Myocardial Infarction, MI). [Online] no date. [Cited: 30 November 2018.]

    [12] Harvard Health Publications. Heart Attack (Myocardial Infarction. [Online] 10 September 2018. [Cited: 30 November 2018.]

    [13] Bergeson Becco, Laine. How Exercise Affects Circulation (and Vice Versa). Experience Life. [Online] June 2017. [Cited: 4 December 2018.]

    [14] Mayo Clinic. Top 5 lifestykle changes to improve your cholesterol. [Online] 11 August 2018. [Cited: 4 December 2018.]

Bile Acids Reagent

Bile Acids Reagents

Features & Benefits of the Randox Bile Acids reagents

Excellent linearity

The Randox Bile Acids method is linear up to a concentration of 150 µmol/l

Exceptional correlation with standard methods

The Randox methodology was compared against other commercially available methods and the Randox Bile Acids assay showed a correlation coefficient of 0.99


Liquid and lyophilised reagents available for greater customer choice


Analyser protocols

Protocols are available for a range of analysers

Excellent stability

Stable to expiry when stored at +2 to +8°C

Ordering information

Cat NoSize
BI3863 (5th)R1 2 x 18ml (L)
R2 2 x 8ml
EnquireKit Insert RequestMSDSBuy Online
BI7982 (5th)R1 6 x 50ml
R2 6 x 18ml
EnquireKit Insert RequestMSDSBuy Online
BI8150 (5th)R1 2 x 17.7ml (L)
R2 2 x 8.9ml
EnquireKit Insert RequestMSDSBuy Online
(L) Indicates liquid reagent

Instrument Specific Applications (ISA’s) are available for a wide range of biochemistry analysers.  Contact us to enquire about your specific analyser.

What are Bile Acids used for?

  • Clinical Significance
  • Biological Significance
  • Inadequacies of traditional bile acid assays

Liver Function

Measuring total bile acid (TBA) levels may prove useful for the detection of liver diseases such as viral hepatitis, mild liver injury through drug use and for further evaluation of patients with chronic hepatitis who were previously treated successfully. TBA levels may rise up to 100 times the normal concentration in patients with liver disease due to impairment of hepatic synthesis and extraction of bile acids. Measurement of TBA in serum can be used in the diagnosis and prognosis of liver diseases and may detect some forms of liver disease earlier than standard liver markers due to the correlation of TBA with liver function, rather than liver damage.

Bile Acid Deficiency

TBA deficiency is caused by a genetic error in one of the 17 enzymes that produce bile acids. Deficiency can lead to liver failure and even death in infants, therefore early detection is vital. People with TBA deficiency may exhibit symptoms, including:

• Vitamin deficiencies, specifically of fat-soluble vitamins such as A, D, E, and K
• Jaundice
• Stunted or abnormal growth
• Diarrhoea
• Loss of liver function
• Liver failure

Intrahepatic Cholestasis of Pregnancy

Intrahepatic cholestasis of pregnancy (ICP) or obstetric cholestasis is a pregnancy-specific liver disorder. It can be indicated by pruritus, jaundice, elevated TBA levels and/or serum transaminases and usually affects women during the second and third trimester of pregnancy. ICP is a condition that restricts the flow of bile through the gallbladder resulting in a build-up of TBA in the liver. Due to the build-up, Bile Acids leak into the bloodstream where they are detected at concerning levels. It is an extremely serious complication of pregnancy that can lead to the increased risk of premature birth or even stillbirth as such it is vital that women with the condition are monitored carefully.

According to several reports TBA levels in ICP can reach as high as 100 times the upper limit of a normal pregnancy. It has been reported that a doubling in maternal serum TBA levels, results in a 200% increased risk of stillbirth. Additionally, bile acids can affect the foetal cardiovascular system as it has been found that there are often cardiac rhythm disturbances in the foetus due to the elevated TBA in circulation.

There are several risk factors associated with ICP such as family history, use of oral contraceptives, assisted reproduction techniques and multiple gestation. Genetic influence accounts for approximately 15% of ICP cases. Dietary selenium is a contributing environmental factor as serum selenium levels often decrease throughout pregnancy. Further to this, incidences of ICP rise in the winter months and are most likely due to the fact selenium levels are naturally less during these months. In healthy pregnancies, there is very little increase in TBA levels although a slight increase is likely to be seen in the third trimester.

Measurement of TBA in serum is thought to be the most suitable method of diagnosing and monitoring ICP.

Bile acids are water-soluble and amphipathic end products of cholesterol metabolism formed in the liver. Bile is stored in the gall bladder and released into the intestine when food is consumed. The fundamental role of bile acids is to aid in the digestion and absorption of fats and fat-soluble vitamins in the small intestine. In doing so, bile acids have five physiological functions within the body as shown below:

Determining the cause and extent of liver damage is important in guiding treatment decisions and preventing disease progression. Standard liver function tests include; ALT, AST, ALP, GGT and Bilirubin. The measurement of TBA is most beneficial in conjunction with these standard liver tests and offers unrivalled sensitivity allowing identification of early stage liver dysfunction.

There are several commercial methods available for the detection and measurement of TBA in serum. Traditional TBA tests based on the enzymatic method use nitrotetrazolium blue (NBT) to form a formazan dye. The reaction is measured at 546nm and the intensity of the colour is proportional to the concentration of bile acids.

Newer methods such as the enzyme cycling method or fifth generation methods offer many advantages including greater sensitivity, liquid reagents, small sample volumes and reduced instrument contamination from formazan dye. Additionally, the fifth generation assay does not suffer from interference from lipaemic or haemolytic samples. Both lipaemia and haemolysis are common in new-borns and pregnant women.

Enzyme cycling methods offer superior analytical performance, two reactions are combined. In the first reaction, bile acids are oxidised by 3-α hydroxysteroid dehydrogenase with the subsequent reduction of Thio-NAD to Thio-NADH. In the second reaction, the oxidised bile acids are reduced by the same enzyme with the subsequent oxidation of NADH to NAD. The rate of formation of Thio-NADH is determined by measuring the specific absorbance change at 405nm. Enzyme cycling means multiple Thio-NAD molecules are generated from each bile acid molecule giving rise to a much larger absorbance change and signal amplification, increasing the sensitivity of the assay.

The assay principle is demonstrated in the diagram below:

The Randox fifth generation assay utilises the advanced enzyme cycling method which displays outstanding sensitivity and precision compared to traditional enzymatic based tests. The assay shows excellent linearity of up to 188 µmol/l with the normal upper range of TBA in a fasting serum sample being at 10 µmol/l. The liquid ready-to-use reagent is available along with complementary controls and calibrators for a complete testing package.

Abbott Alinity

Randox Acetaminophen Reagent

Applications for Abbott Alinity Analysers

Randox have developed a range of applications for use on Abbott Alinity Analysers.  Readily available applications from Randox allows laboratories worldwide to easily enjoy the benefits of freedom of choice, from an independent manufacturer whilst enjoying the benefits of the Randox panel of reagents.

Available applications for Abbott Alinity

We currently have 38 reagents available for the Abbott Alinity, and we are always developing more, therefore if you don’t see the specific application you are looking for, please email us to request an application. All kits are produced to international standard and have ISO 13485 accreditation.

Email Us

Get in touch with Randox via email at

Need Instructions?

Download kit inserts for free on our online portal

Buy Online

Order reagents kits online by visiting our online store 

Request a meeting
Make an Enquiry - RX series
Make an Enquiry - Reagents