Third Party Diagnostic Assays

Home - third party diagnostic tests

Third Party Diagnostic Assays

Diagnostic Reagents

Randox offer over 100 diagnostic reagents covering more than 100 disease markers. Our test panels include cardiology, lipids, specific proteins, therapeutic drug monitoring, antioxidants, diabetes and veterinary diagnostics. These reagents are internationally recognised as being of the ‘highest quality’, delivering accurate traceability and precise patient results.

Key Benefits

Superior Performance

Superior Methodology

Our methodologies ensure accurate and reliable results compared to traditional methods.

In Vitro Diagnostics Testing

Comprehensive Test Menu

A broad testing panel of over 100 diagnostic assays including routine as well as niche reagents unique to Randox

Correlation

Excellent Correlations

Excellent correlations to gold standard & commercial methods providing confidence in patient results

Applications Available

Applications Available

Applications are available for a range of clinical chemistry analysers offering convenience of use

Dedicated bottle

Dedicated Reagent Bottles

Availability of reagents in instrument dedicated bottles, reducing operator time

Reduce costs

Reduce Costs

Versatile test menu enabling laboratories to reduce costs with in-house testing

Testing Panels

Randox provide reagents that are applicable for a wide range of testing panels including the below.

Need more information?

Download the Randox Reagents Brochure for more information or if you would like to get in touch please fill out our quick online enquiry form.

Reagent Instructions

Product Inserts are available to download on our online portal

If you are using the online portal for the first time, you must first register your details using the link provided. Click ‘Request Access’, and submit your details to receive a login.

Reagents by instrument

Randox develop and manufacture reagents that can be used on a variety of clinical chemistry analysers. Additionally, we also supply the applications detailing settings for these instruments. All kits are produced to international standard and have ISO 13485 accreditation. See reagents available for the instruments below.

 

The A-Z Range of Randox Reagents

Select an assay below for more information. Our reagents are suitable for open channels on third party instruments.

Email Us

Get in touch with Randox via email at reagents@randox.com

Need Instructions?

Kit Inserts are available to download for free on our online portal

Buy Online

Order your reagents kits online by visiting our online store 


H-FABP for Acute Kidney Injury Testing Revealed by Randox

2 August 2019

H-FABP for Acute Kidney Injury Testing

Revealed by Randox

A new testing application for the biomarker Heart-Type Fatty Acid-Binding Protein (H-FABP) has been announced by global diagnostics company Randox Laboratories.

Whilst H-FABP is most commonly recognized as an early biomarker of myocardial infarction, the assay’s clinical utility in cardiac surgery associated acute kidney injury (CSA-AKI) is notable. Studies have shown that patients who developed AKI following cardiac surgery had elevated levels of H-FABP both pre-and postoperatively compared to the patients who did not.

 

Susan Hammond, Randox Product Specialist, explained the new application for H-FABP;

“Cardiac surgery-associated acute kidney injury (CSA-AKI) is a well-recognized postoperative complication of cardiac surgery and is the second most common cause of AKI in the intensive care unit (ICU) – occurring in up to 30% of patients.

“Several AKI studies exist focusing on the measurement of H-FABP levels before, during and after cardiac surgery, one of which found that the post-operative H-FABP levels in patients who experienced any AKI increased 8-fold. It was also noted that the levels of those with severe AKI increased 13-fold and that 10.8% of patients who died from subsequent AKI all had elevated pre-operative levels of H-FABP.

“The Randox H-FABP assay is therefore an independent marker of AKI following cardiac surgery, and can furthermore be used as a CSA-AKI risk assessment assay even in advance of the procedure.”

It has been identified that certain patient groups are more susceptible to CSA-AKI and vulnerability can depend on age, sex, pre-existing cardiac dysfunction, pre-existing chronic kidney disease (CKD), previous cardiac surgery or comorbidity.

Susan Hammond added;

“The ability to include biomarkers that aid in the risk assessment and treatment plan management of a patient is significant.  Utilizing H-FABP alongside traditional biomarkers to assess CSI-AKI risk allows the clinician to gain stronger clinical insight in how to improve patient outcomes.”

 

Key Benefits of the Randox H-FABP assay

A niche product from Randox meaning that Randox are one of the only manufacturers to offer the H-FABP assay in an automated biochemistry format

CE marked for diagnostic use

Automated assay offering a more convenient and time efficient method for H-FABP measurements compared to traditional testing

Exceptional correlation of r=0.97 when compared against other commercially available methods

Applications available detailing instrument-specific settings for the convenient use of the Randox H-FABP assay on a wide range of clinical chemistry analysers

Liquid ready-to-use format for convenience and ease-of-use

Latex enhanced immunoturbidimetric method delivering high performance compared to traditional ELISA testing

Rapid results within fourteen minutes, depending on the analyser.

Wide measuring range of 0.747 – 120ng/ml for the early detection of clinically important results

Dedicated H-FABP controls and calibrator available offering a complete testing package


Total Bile Acids: The Value of Fifth Generation Tests

22 July 2019

Total Bile Acids: The Value of Fifth Generation Tests

Bile acids are water-soluble, amphipathic end products of cholesterol metabolism and are involved in liver, biliary and intestinal diseases. They are formed in the liver and are absorbed in the small intestine before being excreted. The fundamental role of bile acids is to aid in the digestion and absorption of fats and fat-soluble vitamins in the small intestine.1

Intrahepatic Cholestasis of Pregnancy

Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder. It can be indicated by pruritus, jaundice, elevated total bile acids and/or serum transaminases and usually affects women during the second and third trimester of pregnancy.2,3

Intrahepatic Cholestasis of pregnancy or Obstetric Cholestasis is a condition that restricts the flow of bile through the gallbladder resulting in a build-up of bile acids in the liver.3 Due to the build-up, bile acids leak into the bloodstream where they are detected at concerning levels. It is an extremely serious complication of pregnancy that can lead to the increased risk of premature birth or even stillbirth, as such it is vital that women with the disease are monitored carefully.

In healthy pregnancies, there is very little increase in total bile acid levels although a slight increase is likely to be seen in the third trimester. Measurement of total bile acids in serum is thought to be the most suitable method of diagnosing and monitoring ICP.6

According to several reports total bile acid levels in ICP can reach as high as 100 times the upper limit of a normal pregnancy. It has been reported that a doubling in maternal serum bile acids, results in a 200% increased risk of stillbirth with total bile acids thought to trigger the onset of preterm labour. Additionally, bile acids can affect the foetal cardiovascular system as it has been found that there are often cardiac rhythm disturbances in the foetus due to the elevated bile acids in circulation.5

Although it is a rare condition, with only 0.3-0.5% of women likely to develop ICP, it can have extreme risks and so it is important to properly diagnose and monitor the condition.6 ICP increases the risk of meconium staining of the amniotic fluid and is reported to be a sign of foetal distress. This complication is found in 16-58% of all ICP cases, worryingly 100% of cases have resulted in foetal death. The frequency of this condition is found to be greater in pregnancies with higher levels of serum total bile acids.

Did you know?

Liver disease is the only major cause of death still increasing every year with 2 million deaths per year being caused by it.4

Risk factors

There are several risk factors associated with ICP such as a family history of ICP, use of oral contraceptives, assisted reproduction techniques and multiple gestation. Genetic influence accounts for approximately 15% of ICP cases. Dietary selenium is a contributing environmental factor as serum selenium levels often decrease throughout pregnancy. Further to this, incidences of ICP rise in the winter months, most likely due to the fact selenium levels are naturally less during these months.7,8

Total Bile Acids

In addition to ICP, bile acid levels are also measured in the diagnosis of other liver disorders. The bile acids test in an extremely sensitive indicator of liver function, capable of detecting changes in hepatic function before clinical symptoms arise, thus providing valuable information that standard liver function tests cannot. As a result of its high sensitivity, bile acids can be used to assess liver function in transplant patients, allowing monitoring of the transplant success and of antirejection therapy. The bile acids test is most beneficial when used in conjunction with standard liver function tests such as ALT and AST which are markers of liver damage rather than liver function.

Measurement of Total Bile Acids

The enzyme cycling method, also known as the Fifth Generation Bile Acids test, is a method that allows for signal amplification through cycled regeneration reactions as can be seen in Figure 1. In the presence of Thio-NAD, the enzyme 3-α hydroxysteroid dehydrogenase (3-α  HSD) converts bile acids to 3-keto steroids and Thio-NADH.  The reaction is reversible and 3-α  HSD can convert 3-keto steroids and Thio-NADH to bile acids and Thio-NAD.  In the presence of excess NADH, the enzyme cycling occurs efficiently and the rate of formation of Thio-NADH is determined by measuring specific change of absorbance at 405 nm and is proportional to the amount of total bile acids in the sample. The analysing capability of the fifth generation total bile acids assay is far beyond the performance of conventional bile acid tests.10,11

Figure 1: The assay principle

Inadequacies of Traditional Bile Acids Assays

Determining the cause and extent of liver damage is important in guiding treatment decisions and preventing disease progression. Standard liver function tests include; ALT, AST, ALP, GGT and Bilirubin. The measurement of TBA is most beneficial in conjunction with these standard liver tests and offers unrivalled sensitivity allowing identification of early stage liver dysfunction. There are several commercial methods available for the detection and measurement of TBA in serum. Traditional TBA tests based on the enzymatic method use nitrotetrazolium blue (NBT) to form a formazan dye. The reaction is measured at 546nm and the intensity of the colour is proportional to the concentration of bile acids.

Newer methods such as the enzyme cycling method or fifth generation methods offer many advantages including greater sensitivity, liquid reagents, small sample volumes and reduced instrument contamination from formazan dye. Additionally, the fifth generation assay does not suffer from interference from lipaemic or haemolytic samples. Both lipemia and haemolysis are common in new-borns and pregnant women, so this further supports that the fifth generation test is more sensitive for these sample types.12

Want to know more?

Contact us or download our total bile acids whitepaper

Related Products

Randox Reagents

Reagents Resource Hub

High Performance & Unique Testing

  • References

    [1] The continuing importance of bile acids in liver and intestinal disease. A.f., Hofmann. 1999, Arch Intern Med, pp. 2647-2658.

    [2] Diagnostic and Therapeutic Profiles of Serum Bile Acids in Women with Intrahepatic Cholestasis of Pregnancy – A Pseudo-Targeted Metabolomics Study. Cui, Yue. Xu, Biao. Zhang, Xiaoqing. He, Yifan. Shao, Yong. Ding, Min. s.l. : Clinica Chimica, 2018, Vol. 483.

    [3] Randox Laboratories. Bile Acids Test for Obstetric Cholestasis – A serious complication of pregnancy. 2012.

    [4] British Liver Trust (2019) Facts about Liver Disease, Available at: https://www.britishlivertrust.org.uk/about-us/media-centre/facts-about-liver-disease/ (Accessed: 18th June 2019).

    [5] .Geenes, Victoria. Williamson, Catherine. 17, s.l. : World J Gastroenterol, 2009, Vol. 15.

    [6] Howland, Genevieve. Cholestasis of Pregnancy: Why You Can’t Ditch the Itch. Mama Natural. [Online] December 22, 2018. [Cited: February 19, 2019.] https://www.mamanatural.com/cholestasis-of-pregnancy/.

    [7] Bile Acid Levels and Risk of Adverse Perinatal Outcomes in Intrahepatic Cholestasis of Pregnancy: A Meta-Analysis. Cui, Donghua, et al.

    [8] Intrahepatic Cholestasis of Pregnancy. Chivers, Sian. Williamson, Catherine. 7, 2018, Vol. 28.

    [9] Masoud, N; Neill, S.H. Serum bile acids as a sensitive biological marker for evaluating hepatic effects of organic solvents. Available from URL: https://www.ncbi.nlm.nih.gov/pubmed/23885947 [Accessed 1 November 2018]

    [10] Microassay of Serum Bile Acids by an Enzymatic Cycling Method. Komiyama, Y, et al. 10, s.l. : Chemical and Pharmaceutical Bulletin, 1982, Vol. 30.

    [11] Evaluation of a Colorimetric Enzymatic Procedure for Determining the Total Bile Acids in the Blood. Agape, V, et al. 3, s.l. : Minerva Gastroenterologica e Dietologica, 1989, Vol. 35.

    [12] Total Bile Acids Test & Clinical Diagnosis. Diazyme. 2019.


Diabetes: The Role of Fructosamine

13 June 2019

Diabetes: The Role of Fructosamine

Diabetes Week is an annual week to raise awareness of diabetes. This year, the aim is to increase the public’s understanding of diabetes 1. Diabetes mellitus (DM) is a global epidemic, increasing at an alarming rate and burdening healthcare systems 2.  DM is a life-long condition characterised by the body’s inability to produce / respond to insulin resulting in the abnormal metabolism of carbohydrates and elevated blood glucose levels.

Whilst it is important to increase the public’s understanding of DM, it is imperative that clinicians and physicians are aware of the different in vitro diagnostic tests to diagnose and monitor DM. Not only is this vital, but is also important that clinicians and physicians also understand the different methodologies available when choosing the diagnostic test.

It has been highlighted in numerous clinical studies that diabetic complications may be reduced through the long-term monitoring and tight control of blood glucose levels. Both fasting plasma glucose (FPG) and glycated haemoglobin A1c (HbA1c) tests are universally accepted as reliable measurements of diabetic control. However, studies have emerged highlighting the role of fructosamine in diabetes monitoring. Whilst HbA1c provides an index of glycaemia over 2 to 3 months, fructosamine provides this index over the course of 2 to 3 weeks, enabling closer monitoring of diabetic control 1.

Did you know?

Diabetes is estimated to be the seventh leading cause of death with 1.6 million deaths attributed to diabetes in 2016 3

Drawbacks of Traditional Diabetes Tests

The FPG test measures the level of blood sugars which is used to diagnose and monitor diabetes based on insulin function. The main drawback of this test is that a hormone called glucagon, produced in the pancreas, is triggered during prolonged fasting, signalling the liver to release glucose into the bloodstream. In diabetic conditions, either the body is unable to generate enough insulin or cannot appropriately respond to insulin. Consequently, FPG levels remain high 4.

In the 1980’s, HbA1c was incorporated into clinical practice as HbA1c levels correlated well with glycaemic control over a 2 to 3-month period. The main drawback of this test is that any condition that reduces the survival rate of erythrocytes such as haemolytic anaemia will falsely lower the HbA1c test results, regardless of the assay method utilised 5.

Fructosamine Testing

In a diabetic patient where blood glucose levels are abnormally elevated, the concentration levels of fructosamine also increase as fructosamine is formed by a non-enzymatic Maillard reaction between glucose and amino acid residues of proteins. During this glycation process, an intermediate labile Schiff base is produced which is converted to a more stable ketoamine (fructosamine) via an Amadori rearrangement 2.

Fructosamine has been identified as an early indicator of diabetic control compared to other markers such as HbA1c. Red blood cells live for approximately 120 days, HbA1c represents the average blood glucose levels for the previous 2 to 3 months. Conversely fructosamine has a shorter lifespan, about 14 to 21 days, reflecting average blood glucose levels from the previous 2 to 3 weeks. Due to the shorter time span of fructosamine, it is also used to evaluate the effectiveness of medication changes and to monitor the treatment of gestational diabetes. The test is also particularly useful in situations where HbA1c cannot be reliably measured e.g. haemolytic anaemia, thalassemia or with genetic haemoglobin variants 5.

Fructosamine Assay Methodology

The most commonly utilised method for fructosamine testing is the colorimetric method. Whilst widely available, automated and inexpensive, the main drawback is the lack of standardisation across the different fructosamine assays 4.

Randox, on the other hand, utilise an enzymatic method, offering improved specificity and reliability compared to conventional NBT-based methods. The Randox enzymatic method does not suffer from non-specific interferences unlike existing methods which can also be time consuming and difficult to automate.

The Randox fructosamine assay is also standardised to the highest level as the Randox fructosamine calibrator and control is assigned relative to human serum glycated with 14C-glucose, which directly reflects the nature of the patient sample.

With an excellent stability of 28 days on-board the analyser, the Randox fructosamine assay is developed in a liquid ready-to-use format for convenience and ease-of-use.

Randox offer fully automated applications detailing instrument-specific settings for the convenient use of the Randox fructosamine assay on a wide range of clinical chemistry analysers.

Want to know more?

Contact us or download our diabetes brochure

Related Products

Randox Reagents

Reagents Resource Hub

Diabetes Panel


Aldolase: A Myositis Biomarker

29 May 2019

Aldolase: A Myositis Biomarker

The month of May is devoted to myositis awareness, a muscle-wasting disease resulting in reduced muscle strength and fatigue. The term ‘myositis’ is an umbrella term referring to the “general inflammation or swelling of the muscle”.  However, myositis is more often referred to as a disease involving chronic inflammation of the muscles which does not improve with rest. This condition is also known as idiopathic inflammatory myopathy (IIM) 1.

Myositis is an autoimmune disease characterised by pain, muscle weaknesses, swelling and extreme fatigue which often gradually appear. Myositis can be potentially life-threatening, especially dermatomyositis which affects the heart muscle and lungs. Whilst a rare disease, it is estimated that 75,000 Americans suffer from myositis, however, many are undiagnosed or misdiagnosed with more common autoimmune diseases. Most physicians are unfamiliar with the disease and symptoms and so the consequences of this can be catastrophic in terms of long-term physical muscle damage, disability and even death 1, 2, 3.

Did you know?

5,000 to 6,000 people in the UK have a form of myositis 3.

Table 1 reviews the different forms of myositis

A table comparing the different types of Myositis

Table 2 reviews complications with or due to myositis

Complications with or due to Myositis

It is vital that physicians are educated to include myositis despite it being a rare disease as it is essential that myositis patients are diagnosed quickly to ensure appropriate treatment plans are implemented.

Aldolase Testing

Aldolase testing has been recognised as a marker in the differential diagnosis of muscle weakness as aldolase levels remain consistent where weakness is caused by neurological problems such as multiple sclerosis (MS). Aldolase is an enzyme specifically found in skeletal muscle and the liver. When either the muscle or liver are damaged, aldolase is released into the bloodstream 13 . A few studies support aldolase testing in the diagnosis of myositis:

 1.  Arthritis Research & Therapy (2012): Aldolase predicts subsequent myopathy occurrence in systemic sclerosis 14

Objective:

A French monocentric 4-year study prospectively evaluated n=137 systemic sclerosis (SSc) patients without proximal muscle weakness to assess the risk of myopathy related systemic sclerosis (Myo-SSc) according to the European Neuro Muscular Centre criteria. Aldolase, creatine kinase (CK), C-reactive protein (CRP), alanine transaminase (ALT) and aspartate transaminase (AST) were evaluated.

Conclusion:

Aldolase is a valuable diagnostic tool in the identification of SSc patients at a high risk of developing subsequent Myo-SSc. This enables clinicians to monitor at-risk patients as well as identifying Myo-SSc in its earliest stages, enabling the effective and swift implementation of an appropriate treatment plan when the muscle damage is still in a reversible stage.

Findings:

2.  Clinical and Experimental Rheumatology (2013): Isolated elevation of aldolase in the serum of myositis patients: a potential biomarker of damaged early regenerating muscle cells 15

Objective:

The in vitro analysis of the gene and protein expression levels of aldolase and CK during muscle cell differentiation.

Conclusion:

Aldolase A is expressed in the absence of CK in undifferentiated muscle cells and in the early differentiation process. Isolated elevated serum aldolase A in myositis patients reflects preferential immune-mediated damage of early regenerative cells. Aldolase is a biomarker of damaged early regenerating muscle cells.

Findings:

Myositis can be a potentially life-threatening disease when undiagnosed or misdiagnosed. Aldolase is recognised as a biomarker in the diagnosis and monitoring of myositis. Randox are one of the only in-vitro diagnostic manufacturers to offer the aldolase assay in an automated and manual biochemistry format. Not only does the Randox methodology have an excellent correlation coefficient to r=0.9917 when compared against standard methods, the Randox assay is lyophilised for enhanced stability with an excellent measuring range of 1.73 – 106U/l. Moreover, applications are available detailing instrument-specific settings for the convenient use of the Randox aldolase assay on a wide range of clinical chemistry analysers.

Want to know more?

Contact us or download our high performance & unique tests brochure

Related Products

Randox Reagents

Reagents Resource Hub

Clinical Chemistry Panel


Rare Disease Day: 28th February 2019

28th February 2019

Rare Disease Day: 28th February 2019

Rare Disease Day raises awareness of rare diseases and how patients’ lives are affected. Many rare diseases remain incurable and many go undiagnosed. 1 in 20 people will live with a rare disease at some point in their life and this is why it is so important to raise awareness.1

What is a rare disease?

There is no single definition for a rare disease, as many countries identify them differently. In the United States, the Rare Diseases Act of 2002 defines a rare disease by its prevalence: “any disease or condition that affects fewer than 200,000 people in the United States”. However, the EU defines a rare disease as a condition that affects less than 5 in 10,000 of the population. There are approximately 7000 rare diseases and disorders and 50% of people affected by rare diseases are children.2,3

Hyperlipoproteinemia type III

This rare disease day, Randox will be raising awareness of hyperlipoproteinemia type III.  Hyperlipoproteinemia type III, also known as dysbetalipoproteinemia or broad beta disease, is a rare genetic disorder characterised by improper breakdown of lipids, specifically cholesterol and triglycerides.  The condition is caused by mutations in the Apo-E gene, however the inheritance of this condition is complicated due to the development of symptoms having to be triggered by a secondary factor to raise lipid levels. These factors include diabetes, obesity or hypothyroidism.

It is unknown exactly what the prevalence of the condition is, but it is estimated to affect approximately 1 in 5,000 – 10,000 of the general population and it has been found that it affects males more often than females, with women rarely being affected until after menopause.4,5

Figure A. Example of cholesterol and lipid build-up [6] 

Symptoms

Symptoms for hyperlipoproteinemia type III will vary for each individual and some people may even be asymptomatic. The most common symptom is the development of xanthomas which are deposits of fatty material, the lipids, in the skin and underlying tissue. Xanthomas may appear on the palms of the hands, eyelids, soles of the feet or on the tendons of the knees and elbows.

> Chest pain or other signs of coronary artery disease

> Cramps in the calves when walking

> Sores on toes

> Stroke-like symptoms such as trouble speaking, dropping on one side of the face, weakness in an arm or a leg and a loss of balance6

Complications can arise if the condition is left untreated and these can include: myocardial infarction, ischemic stroke, peripheral vascular disease, intermittent claudication and gangrene of the lower extremities.7

Diagnosis

Although there is no specific diagnostic test for hyperlipoproteinemia type III, diagnosis is based on clinical evaluation and identification of symptoms. Research has indicated that an algorithm comprising a number of dysbetalipoproteinemia indices may be helpful in the diagnosis of the disease.  These include:

> Low apolipoprotein B to total cholesterol ratio

> Elevated levels of triglycerides

> Elevated levels of total cholesterol8

Managing the condition

The condition cannot be cured but treatment is to control conditions such as obesity, hypothyroidism and diabetes. Most patients will go through dietary therapy to control their intake of cholesterol and saturated fat. This prevents xanthomas, high levels of lipids in the blood, exercise will also help to lower lipid levels. However, dietary changes may not be effective for some individuals and this is where drugs may be used to lower lipid levels instead.

How Randox can Help

Randox offer a range of routine and niche assays within the lipid testing panel to monitor lipid levels and to identify associated complications.  Some of these tests include:

Apolipoprotein B

The Randox Apolipoprotein B tests utilises an immunoturbidimetric method, offers a wide measuring range and is available liquid ready-to-use for convenience and ease of use.

Learn more about the Randox Apolipoprotein B Test

Total Cholesterol

The Randox Total Cholesterol test utilises the CHOD-PAP method and offers an extensive measuring range with a wide range of kits available to suit a wide range of laboratory sizes.

Learn more about the Randox Total Cholesterol test

Triglycerides

The Randox Triglycerides test utilises the GPO-PAP method while offering an extensive measuring range with both liquid and lyophilised formats available offering choice and flexibility.

Want to know more?

Contact us or download our Cardiology and Lipid Testing brochure to learn more.




Related Products

Randox Reagents

Resource Hub

Lipid Panel Page

  • References

    [1] Rare Disease Day. What is Rare Disease Day? Rare Disease Day. [Online] 2019. [Cited: February 21, 2019.] https://www.rarediseaseday.org/article/what-is-rare-disease-day

    [2] Genetic Alliance UK. What is a Rare Disease? Rare Disease UK. [Online] 2018. [Cited: February 21, 2019.] https://www.raredisease.org.uk/what-is-a-rare-disease/

    [3] NZORD. Rare Disease Facts and Figures. NZORD. [Online] 2019. [Cited: February 21, 2019.] https://www.nzord.org.nz/helpful-information/rare-disease-facts-and-figures.

    [4] NORD. Hyperlipoproteinemia Type III. NORD. [Online] 2019. [Cited: February 21, 2019.] https://rarediseases.org/rare-diseases/hyperlipoproteinemia-type-iii/

    [5] GARD. Hyperlipidemia Type 3. National Centre for Advanciing Translational Sciences. [Online] December 29, 2016. [Cited: February 21, 2019.] https://rarediseases.info.nih.gov/diseases/6703/hyperlipidemia-type-3

    [6] Falck, Suzanne. Everything you need to know about hyperlipidemia. Medical News Today. [Online] December 21, 2017. [Cited: February 21, 2019.] https://www.medicalnewstoday.com/articles/295385.php

    [7] Medline Plus. Familial Dysbetalipoproteinemia. Medline Plus. [Online] May 16, 2018. [Cited: February 21, 2019.] https://medlineplus.gov/ency/article/000402.htm.

    [8] Dysbetalipoproteinemia: Two cases report and a diagnostic algorithm. Kei, Anastazia, et al. 4, s.l. : World Journal of Clinical Cases, 2015, Vol. 3.


Obesity and Kidney Disease: What is the Connection?

30th January 2019

Obesity and Kidney Disease: What is the Connection?

The month of January has forever been the month of resolutions with many choosing to ditch the sweets and join the gym. However, for many these efforts are limited to January and bad habits are quick to remerge. Obesity has been a burden on the health service for many years with the problem, like many people’s waist lines, only continuing to expand.

Recent findings have shown that this problem is no longer just increasing in developed countries but also in developing countries. In fact, worldwide obesity has tripled since 1975. In 2016, more than 1.9 million adults were classed as overweight, of which over 650 million were obese.1 These are shocking statistics for a condition that is preventable. As a global concern, it is important to assess all the potential risks of this problem.

The most common diseases associated with obesity are cardiovascular disease (CVD) and diabetes. However, the associated risks are much greater than this. Being overweight may also increase the risk of certain types of cancer, sleep apnea, osteoarthritis, fatty liver disease and kidney disease.2

Obesity is now recognised as a potent risk factor for the development of renal disease.3 Excess weight has a direct impact on the development and progression of chronic kidney disease (CKD). Globally, the prevalence of diabetic kidney disease rose by 39.5% between 2005 and 2015, coinciding with the increased CKD prevalence.4 In obese individuals, the kidneys have to work harder, filtering more blood than normal to meet the metabolic demands of increased body weight, increasing the risk of kidney disease.

The traditional diagnostic test for renal impairment is creatinine. This test is carried out through the measurement of creatinine levels in the blood to assess the kidneys ability to clear creatinine from the body. This is called the creatinine clearance rate which helps to estimate the glomerular filtration rate (GFR), which is the rate of blood flow through the kidneys.5

Problems arise when using creatinine for CKD testing as a number of factors need to be taken into consideration including age, gender, ethnicity and muscle mass. For this reason, black men and women exhibit higher creatinine levels than white men and women, raising concern over the accuracy of this test for certain patient groups.6 In addition, serum creatinine is not an adequate screening test for renal impairment in the elderly due to their decreased muscle mass.7

The main disadvantage of using creatinine to screen for renal impairment is that up to 50% of renal function can be lost before significant creatinine levels become detectable as creatinine is insensitive to small changes in GFR. Consequently, treatment is not provided at the appropriate time which can be fatal, therefore, an earlier and more sensitive marker for renal function is vital.8

These disadvantages have not only been highlighted in research but also by the national institute for health and care excellence (NICE).  NICE updated the classification of CKD in 2004 to include the albumin: creatinine ratio (ACR). They split chronic kidney disease patients into categories based on GFR and ACR. Figure 1 highlights the different categories and risk of adverse outcomes. NICE recommend using eGFR Cystatin C for people in the CKD G3aA1 and higher.9

Figure 1 Classification of Chronic Kidney Disease using GFR and ACR categories.9

Despite these suggestions, Creatinine is still being used for G3a1 and increasing risk levels.

The utility of cystatin C as a diagnostic biomarker for kidney disease has been documented to show superiority of traditional CKD tests. There is no ‘blind area’ making it very sensitive to small changes in GFR and capable of detecting early reductions.  Furthermore, this marker is less influenced by diet or muscle mass and has proven to be a beneficial test in patients who are overweight.8

A number of studies support the statement: ‘Cystatin C levels are higher in overweight and obese patients’. This is important because when cystatin c levels are too high, it may suggest that the kidneys are not functioning properly. One study conducted, using a nationally representative sample of participants, found that overweight and obesity maintained a strong association with elevated serum cystatin C. This suggests that weight can affect the levels of cystatin C and therefore the likelihood of developing kidney disease.10

How Randox can Help

The Randox automated Latex Enhanced Immunoturbidimetric Cystatin C tests offers an improved method for assessing CKD risk, combined with a convenient format for routine clinical use, for the early assessment of at risk patients. Randox is currently one of the only diagnostic manufacturers who offer an automated biochemistry test for Cystatin C measurement, worldwide.

Want to know more?

Contact us or visit our featured reagent page to learn more.




Related Products

Randox Reagents

Resource Hub


World Diabetes Day: The Biggest Burden on the NHS

14 November 2018

World Diabetes Day

Diabetes

Approximately 400,000 people in the UK are living with type 1 diabetes, with over 29,000 being children and young people [1]. Type 1 diabetes affects 96% of all children with diabetes in England and Wales, with incidences increasing by approximately 4% each year.

Globally, the UK has the fifth highest rate of type 1 diabetes diagnosis in children (aged up to 14) with 85% of these children having no family history of the condition. Whilst the condition isn’t fatal and can be managed, it cannot be cured. Type 1 diabetes increases the risk of developing other health problems such as heart disease, stroke, foot and circulation problems, sight problems including blindness, nerve damage and kidney problems. However, many of these related conditions are preventable and it is recommended to stabilise blood sugar levels, attend diabetes appointments regularly and complete a diabetes course to educate patients and family members and prevent the risk of further help complications[2].

Diabetes in children

Children under five are at the highest risk of developing diabetic ketoacidosis due to a late diagnosis and it is also thought to be due to of lack of public knowledge of the signs and symptoms attributed to type 1 diabetes. Such symptoms include:

  • Frequent urination as the kidneys are trying to expel excess sugar in the blood, resulting in dehydration which leads to extreme thirst.
  • Increased hunger or unexpected weight loss because the body is unable to attain enough energy from food
  • Slow healing cuts as high blood sugar levels can affect blood flow which can cause nerve damage.
  • Fatigue as the body is unable to convert sugar into energy
  • Irritable behaviour combined with other symptoms can be a means of concern

Diabetes and the NHS

Diabetes costs the NHS approximately £9.8 billion per year, an estimate of 10% of total expenditures. Hospital admissions of children and young people with diabetes presents a considerable burden on themselves, their families and the NHS. It is estimated that approximately 80% of these cases are potentially avoidable.

A report produced by the National Paediatric Diabetes Audit found that although the numbers of admissions didn’t significantly differ year to year, it highlighted differences in terms of socio-economic risk factors:

  • Living in a deprived area increases the risk of hospital admissions which can be attributed to lack of education in the community about diabetic symptoms and the management of diabetes.
  • Children below 5 years of age have a 35% increased risk of hospitalisation compared to those aged 5-9
  • Females have a 33% increased risk of developing type 1 diabetes compared to males.
  • Children with poor diabetes control have a twelve-fold increased risk of hospital admission
  • Insulin pump users have a 27% increased risk of hospital admission compared to those who use insulin injections.
Figure A. Number of preventable paediatric diabetes admissions  [3] 

Prevention

There are campaigns in place to aid in the early diagnosis of type 1 diabetes which mainly focus on raising awareness of the signs and symptoms of diabetes. On this World Diabetes Day, it is important to know that it is not just simply the responsibility of the diabetic patient to prevent admission but the main responsibility lies with the diabetic teams that inform the families with children who are diagnosed with type 1 diabetes.

Paediatric diabetes teams should ensure that the families and the children receive structured education for self-management when diagnosed and throughout the illness. In doing so, the diabetic teams should implement blood ketone testing from diagnosis and utilise the nationally agreed hypoglycaemia management guidelines. It is also important that diabetic teams are fully aware of the patient characteristics associated with a greater risk of admission and that they use this knowledge to develop anti-admission strategies specifically tailored to the needs of each individual group.

Primary care practitioners should seek access to a specialist diabetic team who they can refer to when deciding if a patient requires admission to hospital. Furthermore, they should access blood glucose and ketone testing to identify patients at risk of diabetic ketoacidosis that require hospital admission.

How Randox can Help

Randox offer a range of assays to diagnosis and monitor diabetes and to monitor associated complications.  Some of these tests are unique to Randox, including:

Fructosamine

The Randox fructosamine assay employs the enzymatic method which offers improved specificity and reliability compared to conventional NBT-based methods. The Randox enzymatic method does not suffer from non-specific interferences unlike other commercially available fructosamine assays.

Learn more about the Randox Fructosamine test

D-3-Hydroxybutyrate (Ranbut)

The Randox D-3-Hydroxybutyrate (Ranbut) assay detects the most abundant and sensitive ketone in the body, D-3-Hydroxybutyrate. The Randox Ranbut assay is used for the diagnosis of ketosis, more specifically diabetic ketoacidosis. Other commercially available tests, such as the nitroprusside method, are less sensitive as they only detect acetone and acetoacetate, not D-3-Hydroxybutyrate.

Learn more about the Randox D-3-Hydroxybutyrate test

Adiponectin

The Randox adiponectin assay is a biomarker in diabetes testing as adiponectin is a protein hormone responsible for regulating the metabolism of lipids and glucose and influences the body’s response to insulin. Adiponectin levels inversely correlates with abdominal visceral fat levels.

Want to know more?

Contact us or visit our Diabetes panel page to learn more.




Related Products

Randox Reagents

Resource Hub

  • References

    [1] National Paediatric Diabetes Audit and Royal College of Paediatrics and Child Health, National Paediatric Diabetes Audit Report 2012-15: Part 2, 2017

    [2] NHS, “Avoiding Complications” – Type 1 Diabetes, Available at: https://www.nhs.uk/conditions/type-1-diabetes/avoiding-complications/ [Accessed on 24th October 2018].

    [3] “Potentially Preventable Pediatric Hospital Inpatient Stays for Asthma and Diabetes, 2003-2012”, www.hcup-us.ahrq.gov, 2015. [Online] Available: https://www.hcup-us.ahrq.gov/reports/statbriefs/sb192-Pediatric-Preventable-Hospitalizations-Asthma-Diabetes.jsp [Accessed 08-Nov-18]


Request a meeting
×
Make an Enquiry - RX series
×
Make an Enquiry - Reagents
×
Kit Insert Request - Reagents
  • Signing up to our mailing list is quick and easy. We do not wish to send you any spam or junk email, therefore, you can expect to receive mailshots including new product launches and updates, market trends, attendance at key industry events and much more. Randox Laboratories promise never to sell your data and we will keep all your details, safe and secure. Read more in our Privacy Policy.
×
Kit Insert Request - Reagents
  • Signing up to our mailing list is quick and easy. We do not wish to send you any spam or junk email, therefore, you can expect to receive mailshots including new product launches and updates, market trends, attendance at key industry events and much more. Randox Laboratories promise never to sell your data and we will keep all your details, safe and secure. Read more in our Privacy Policy.
×
Make an Enquiry - Reagents
×
Make an Enquiry - Quality Control
×
Make an Enquiry - RIQAS
×
Make an Enquiry - RIQAS
×
Make an Enquiry - Quality Control
×
Make an Enquiry
  • Signing up to our mailing list is quick and easy. We do not wish to send you any spam or junk email, therefore, you can expect to receive mailshots including new product launches and updates, market trends, attendance at key industry events and much more. Randox Laboratories promise never to sell your data and we will keep all your details, safe and secure. Read more in our Privacy Policy.
×
Make an Enquiry - Biochip
  • This field is for validation purposes and should be left unchanged.
×
Make an Enquiry - Molecular
  • Signing up to our mailing list is quick and easy. We do not wish to send you any spam or junk email, therefore, you can expect to receive mailshots including new product launches and updates, market trends, attendance at key industry events and much more. Randox Laboratories promise never to sell your data and we will keep all your details, safe and secure. Read more in our Privacy Policy.
  • This field is for validation purposes and should be left unchanged.
×
Make an Enquiry - Future Diagnostics
×
Make an Enquiry - RX series (Product)
×
Make an Enquiry - Quality Control
  • Signing up to our mailing list is quick and easy. We do not wish to send you any spam or junk email, therefore, you can expect to receive mailshots including new product launches and updates, market trends, attendance at key industry events and much more. Randox Laboratories promise never to sell your data and we will keep all your details, safe and secure. Read more in our Privacy Policy.
×
Make an Enquiry - RIQAS
  • Signing up to our mailing list is quick and easy. We do not wish to send you any spam or junk email, therefore, you can expect to receive mailshots including new product launches and updates, market trends, attendance at key industry events and much more. Randox Laboratories promise never to sell your data and we will keep all your details, safe and secure. Read more in our Privacy Policy.
×
Make an Enquiry - Reagents